Automatic water canal detection in multispectral satellite images

In this paper, a method for automatically detecting water regions and classifying water canals containing water in high resolution multispectral satellite images in a rule based manner is proposed. As water canals may be of different lengths and widths, indices employed in the literature and image g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gedik, E., Cinar, U., Karaman, E., Yardimci, Y., Halici, U., Pakin, K., Ergezer, H.
Format: Tagungsbericht
Sprache:eng ; tur
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Gedik, E.
Cinar, U.
Karaman, E.
Yardimci, Y.
Halici, U.
Pakin, K.
Ergezer, H.
description In this paper, a method for automatically detecting water regions and classifying water canals containing water in high resolution multispectral satellite images in a rule based manner is proposed. As water canals may be of different lengths and widths, indices employed in the literature and image gradients are used adaptively to classify water regions. The well known spatial properties of water canals are used to determine the water canals among the extracted water regions. The proposed algorithm is tested on high resolution multispectral satellite images covering large areas and satisfactory results are obtained.
doi_str_mv 10.1109/SIU.2013.6531535
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6531535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6531535</ieee_id><sourcerecordid>6531535</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-797c549b260927c75a085f6ec309e65dec412c1c05330a0ef99a883818dfce063</originalsourceid><addsrcrecordid>eNpVT01Lw0AQXRFBqbkLXvYPJM5mMvtxDMWPQsGD9lzWzURWkrRkt4j_3oC9eHq8j5nHE-JOQaUUuIe3za6qQWGlCRUhXYjCGasabZBIo778x2t3LYqUvgBgudbO6hvRtqd8GH2OQX77zLMMfvKD7DhzyPEwyTjJ8TTkmI6LMC9WWmLDEDPLOPpPTrfiqvdD4uKMK7F7enxfv5Tb1-fNut2WUQHl0jgTqHEftQZXm2DIg6Vec0BwrKnj0Kg6qACECB64d85bi1bZrg8MGlfi_u9vZOb9cV7a55_9eTj-AsnNS0Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic water canal detection in multispectral satellite images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gedik, E. ; Cinar, U. ; Karaman, E. ; Yardimci, Y. ; Halici, U. ; Pakin, K. ; Ergezer, H.</creator><creatorcontrib>Gedik, E. ; Cinar, U. ; Karaman, E. ; Yardimci, Y. ; Halici, U. ; Pakin, K. ; Ergezer, H.</creatorcontrib><description>In this paper, a method for automatically detecting water regions and classifying water canals containing water in high resolution multispectral satellite images in a rule based manner is proposed. As water canals may be of different lengths and widths, indices employed in the literature and image gradients are used adaptively to classify water regions. The well known spatial properties of water canals are used to determine the water canals among the extracted water regions. The proposed algorithm is tested on high resolution multispectral satellite images covering large areas and satisfactory results are obtained.</description><identifier>ISBN: 9781467355629</identifier><identifier>ISBN: 1467355623</identifier><identifier>EISBN: 9781467355636</identifier><identifier>EISBN: 1467355631</identifier><identifier>EISBN: 1467355615</identifier><identifier>EISBN: 9781467355612</identifier><identifier>DOI: 10.1109/SIU.2013.6531535</identifier><language>eng ; tur</language><publisher>IEEE</publisher><subject>Bridges ; high resolution satellite images ; Irrigation ; Remote sensing ; Satellites ; Spatial resolution ; spectral index ; structural analysis ; Water ; water canal extraction</subject><ispartof>2013 21st Signal Processing and Communications Applications Conference (SIU), 2013, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6531535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6531535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gedik, E.</creatorcontrib><creatorcontrib>Cinar, U.</creatorcontrib><creatorcontrib>Karaman, E.</creatorcontrib><creatorcontrib>Yardimci, Y.</creatorcontrib><creatorcontrib>Halici, U.</creatorcontrib><creatorcontrib>Pakin, K.</creatorcontrib><creatorcontrib>Ergezer, H.</creatorcontrib><title>Automatic water canal detection in multispectral satellite images</title><title>2013 21st Signal Processing and Communications Applications Conference (SIU)</title><addtitle>SIU</addtitle><description>In this paper, a method for automatically detecting water regions and classifying water canals containing water in high resolution multispectral satellite images in a rule based manner is proposed. As water canals may be of different lengths and widths, indices employed in the literature and image gradients are used adaptively to classify water regions. The well known spatial properties of water canals are used to determine the water canals among the extracted water regions. The proposed algorithm is tested on high resolution multispectral satellite images covering large areas and satisfactory results are obtained.</description><subject>Bridges</subject><subject>high resolution satellite images</subject><subject>Irrigation</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Spatial resolution</subject><subject>spectral index</subject><subject>structural analysis</subject><subject>Water</subject><subject>water canal extraction</subject><isbn>9781467355629</isbn><isbn>1467355623</isbn><isbn>9781467355636</isbn><isbn>1467355631</isbn><isbn>1467355615</isbn><isbn>9781467355612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT01Lw0AQXRFBqbkLXvYPJM5mMvtxDMWPQsGD9lzWzURWkrRkt4j_3oC9eHq8j5nHE-JOQaUUuIe3za6qQWGlCRUhXYjCGasabZBIo778x2t3LYqUvgBgudbO6hvRtqd8GH2OQX77zLMMfvKD7DhzyPEwyTjJ8TTkmI6LMC9WWmLDEDPLOPpPTrfiqvdD4uKMK7F7enxfv5Tb1-fNut2WUQHl0jgTqHEftQZXm2DIg6Vec0BwrKnj0Kg6qACECB64d85bi1bZrg8MGlfi_u9vZOb9cV7a55_9eTj-AsnNS0Y</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Gedik, E.</creator><creator>Cinar, U.</creator><creator>Karaman, E.</creator><creator>Yardimci, Y.</creator><creator>Halici, U.</creator><creator>Pakin, K.</creator><creator>Ergezer, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>Automatic water canal detection in multispectral satellite images</title><author>Gedik, E. ; Cinar, U. ; Karaman, E. ; Yardimci, Y. ; Halici, U. ; Pakin, K. ; Ergezer, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-797c549b260927c75a085f6ec309e65dec412c1c05330a0ef99a883818dfce063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; tur</language><creationdate>2013</creationdate><topic>Bridges</topic><topic>high resolution satellite images</topic><topic>Irrigation</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Spatial resolution</topic><topic>spectral index</topic><topic>structural analysis</topic><topic>Water</topic><topic>water canal extraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Gedik, E.</creatorcontrib><creatorcontrib>Cinar, U.</creatorcontrib><creatorcontrib>Karaman, E.</creatorcontrib><creatorcontrib>Yardimci, Y.</creatorcontrib><creatorcontrib>Halici, U.</creatorcontrib><creatorcontrib>Pakin, K.</creatorcontrib><creatorcontrib>Ergezer, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gedik, E.</au><au>Cinar, U.</au><au>Karaman, E.</au><au>Yardimci, Y.</au><au>Halici, U.</au><au>Pakin, K.</au><au>Ergezer, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic water canal detection in multispectral satellite images</atitle><btitle>2013 21st Signal Processing and Communications Applications Conference (SIU)</btitle><stitle>SIU</stitle><date>2013-04</date><risdate>2013</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781467355629</isbn><isbn>1467355623</isbn><eisbn>9781467355636</eisbn><eisbn>1467355631</eisbn><eisbn>1467355615</eisbn><eisbn>9781467355612</eisbn><abstract>In this paper, a method for automatically detecting water regions and classifying water canals containing water in high resolution multispectral satellite images in a rule based manner is proposed. As water canals may be of different lengths and widths, indices employed in the literature and image gradients are used adaptively to classify water regions. The well known spatial properties of water canals are used to determine the water canals among the extracted water regions. The proposed algorithm is tested on high resolution multispectral satellite images covering large areas and satisfactory results are obtained.</abstract><pub>IEEE</pub><doi>10.1109/SIU.2013.6531535</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467355629
ispartof 2013 21st Signal Processing and Communications Applications Conference (SIU), 2013, p.1-4
issn
language eng ; tur
recordid cdi_ieee_primary_6531535
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bridges
high resolution satellite images
Irrigation
Remote sensing
Satellites
Spatial resolution
spectral index
structural analysis
Water
water canal extraction
title Automatic water canal detection in multispectral satellite images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20water%20canal%20detection%20in%20multispectral%20satellite%20images&rft.btitle=2013%2021st%20Signal%20Processing%20and%20Communications%20Applications%20Conference%20(SIU)&rft.au=Gedik,%20E.&rft.date=2013-04&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781467355629&rft.isbn_list=1467355623&rft_id=info:doi/10.1109/SIU.2013.6531535&rft_dat=%3Cieee_6IE%3E6531535%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467355636&rft.eisbn_list=1467355631&rft.eisbn_list=1467355615&rft.eisbn_list=9781467355612&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6531535&rfr_iscdi=true