Novel segmentation algorithm for hand gesture recognition

Sign language is the most important methodology using which hearing and speech impaired people can interact with the rest of the world. Conversation with hearing impaired individuals gets complicated if the listener is ignorant of sign language. Hence it becomes important to construct a bridge betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dhruva, N., Rupanagudi, Sudhir Rao, Sachin, S. K., Sthuthi, B., Pavithra, R., Raghavendra
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue
container_start_page 383
container_title
container_volume
creator Dhruva, N.
Rupanagudi, Sudhir Rao
Sachin, S. K.
Sthuthi, B.
Pavithra, R.
Raghavendra
description Sign language is the most important methodology using which hearing and speech impaired people can interact with the rest of the world. Conversation with hearing impaired individuals gets complicated if the listener is ignorant of sign language. Hence it becomes important to construct a bridge between these two banks. Many sign language and hand gesture recognition algorithms have been developed in the recent years, to assist people who do not have knowledge of sign language to converse with the speech impaired but very few with good results exist. One of the major concerns with respect to hand gesture recognition is segregation or segmentation of the hand and identifying the gesture. This paper explores the various possible ways of segmentation using different color spaces and models and presents the best algorithm with highest accuracy to perform the same. Various experiments were conducted for over 500 different gestures and an accuracy of around 97.4% was achieved with the segmentation algorithm selected. The algorithms were implemented in MATLAB programming language on MATLAB 7.14.0.739 build R2012a.
doi_str_mv 10.1109/iMac4s.2013.6526441
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6526441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6526441</ieee_id><sourcerecordid>6526441</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2454aaf139dc8a4216a2a6600302fb7a8f39d083f21fa431e72fc0a54ef6f8333</originalsourceid><addsrcrecordid>eNotj8tKxEAURFtEUMd8wWz6BxJvP9KPpQy-YNSNrodr5namJUlLdxT8e0fMqijqVEExthbQCAH-Oj5hp0sjQajGtNJoLU5Y5a0T2ljVggd7yi4X47w6Z1UpHwBwbBvw_oL55_RNAy_UjzTNOMc0cRz6lON8GHlImR9w2vOeyvyViWfqUj_FP-yKnQUcClWLrtjb3e3r5qHevtw_bm62dRS2nWupW40YhPL7zqGWwqBEYwAUyPBu0YVjAk4FKQJqJcjK0AG2moIJTim1Yuv_3UhEu88cR8w_u-Wt-gWuZEkQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Novel segmentation algorithm for hand gesture recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dhruva, N. ; Rupanagudi, Sudhir Rao ; Sachin, S. K. ; Sthuthi, B. ; Pavithra, R. ; Raghavendra</creator><creatorcontrib>Dhruva, N. ; Rupanagudi, Sudhir Rao ; Sachin, S. K. ; Sthuthi, B. ; Pavithra, R. ; Raghavendra</creatorcontrib><description>Sign language is the most important methodology using which hearing and speech impaired people can interact with the rest of the world. Conversation with hearing impaired individuals gets complicated if the listener is ignorant of sign language. Hence it becomes important to construct a bridge between these two banks. Many sign language and hand gesture recognition algorithms have been developed in the recent years, to assist people who do not have knowledge of sign language to converse with the speech impaired but very few with good results exist. One of the major concerns with respect to hand gesture recognition is segregation or segmentation of the hand and identifying the gesture. This paper explores the various possible ways of segmentation using different color spaces and models and presents the best algorithm with highest accuracy to perform the same. Various experiments were conducted for over 500 different gestures and an accuracy of around 97.4% was achieved with the segmentation algorithm selected. The algorithms were implemented in MATLAB programming language on MATLAB 7.14.0.739 build R2012a.</description><identifier>ISBN: 1467350893</identifier><identifier>ISBN: 9781467350891</identifier><identifier>EISBN: 9781467350907</identifier><identifier>EISBN: 1467350907</identifier><identifier>EISBN: 9781467350884</identifier><identifier>EISBN: 1467350885</identifier><identifier>DOI: 10.1109/iMac4s.2013.6526441</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; American Sign Language (ASL) ; Assistive technology ; French Sign Language (FSL) ; Gesture recognition ; Hand Gesture Recognition ; HSI color space ; Image color analysis ; Image Processing ; Image segmentation ; RGB color space ; Segmentation ; Sign Language Recognition ; Thumb ; Y'CbCr color space</subject><ispartof>2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), 2013, p.383-388</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6526441$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6526441$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dhruva, N.</creatorcontrib><creatorcontrib>Rupanagudi, Sudhir Rao</creatorcontrib><creatorcontrib>Sachin, S. K.</creatorcontrib><creatorcontrib>Sthuthi, B.</creatorcontrib><creatorcontrib>Pavithra, R.</creatorcontrib><creatorcontrib>Raghavendra</creatorcontrib><title>Novel segmentation algorithm for hand gesture recognition</title><title>2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)</title><addtitle>iMac4s</addtitle><description>Sign language is the most important methodology using which hearing and speech impaired people can interact with the rest of the world. Conversation with hearing impaired individuals gets complicated if the listener is ignorant of sign language. Hence it becomes important to construct a bridge between these two banks. Many sign language and hand gesture recognition algorithms have been developed in the recent years, to assist people who do not have knowledge of sign language to converse with the speech impaired but very few with good results exist. One of the major concerns with respect to hand gesture recognition is segregation or segmentation of the hand and identifying the gesture. This paper explores the various possible ways of segmentation using different color spaces and models and presents the best algorithm with highest accuracy to perform the same. Various experiments were conducted for over 500 different gestures and an accuracy of around 97.4% was achieved with the segmentation algorithm selected. The algorithms were implemented in MATLAB programming language on MATLAB 7.14.0.739 build R2012a.</description><subject>Accuracy</subject><subject>American Sign Language (ASL)</subject><subject>Assistive technology</subject><subject>French Sign Language (FSL)</subject><subject>Gesture recognition</subject><subject>Hand Gesture Recognition</subject><subject>HSI color space</subject><subject>Image color analysis</subject><subject>Image Processing</subject><subject>Image segmentation</subject><subject>RGB color space</subject><subject>Segmentation</subject><subject>Sign Language Recognition</subject><subject>Thumb</subject><subject>Y'CbCr color space</subject><isbn>1467350893</isbn><isbn>9781467350891</isbn><isbn>9781467350907</isbn><isbn>1467350907</isbn><isbn>9781467350884</isbn><isbn>1467350885</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxEAURFtEUMd8wWz6BxJvP9KPpQy-YNSNrodr5namJUlLdxT8e0fMqijqVEExthbQCAH-Oj5hp0sjQajGtNJoLU5Y5a0T2ljVggd7yi4X47w6Z1UpHwBwbBvw_oL55_RNAy_UjzTNOMc0cRz6lON8GHlImR9w2vOeyvyViWfqUj_FP-yKnQUcClWLrtjb3e3r5qHevtw_bm62dRS2nWupW40YhPL7zqGWwqBEYwAUyPBu0YVjAk4FKQJqJcjK0AG2moIJTim1Yuv_3UhEu88cR8w_u-Wt-gWuZEkQ</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Dhruva, N.</creator><creator>Rupanagudi, Sudhir Rao</creator><creator>Sachin, S. K.</creator><creator>Sthuthi, B.</creator><creator>Pavithra, R.</creator><creator>Raghavendra</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201303</creationdate><title>Novel segmentation algorithm for hand gesture recognition</title><author>Dhruva, N. ; Rupanagudi, Sudhir Rao ; Sachin, S. K. ; Sthuthi, B. ; Pavithra, R. ; Raghavendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2454aaf139dc8a4216a2a6600302fb7a8f39d083f21fa431e72fc0a54ef6f8333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>American Sign Language (ASL)</topic><topic>Assistive technology</topic><topic>French Sign Language (FSL)</topic><topic>Gesture recognition</topic><topic>Hand Gesture Recognition</topic><topic>HSI color space</topic><topic>Image color analysis</topic><topic>Image Processing</topic><topic>Image segmentation</topic><topic>RGB color space</topic><topic>Segmentation</topic><topic>Sign Language Recognition</topic><topic>Thumb</topic><topic>Y'CbCr color space</topic><toplevel>online_resources</toplevel><creatorcontrib>Dhruva, N.</creatorcontrib><creatorcontrib>Rupanagudi, Sudhir Rao</creatorcontrib><creatorcontrib>Sachin, S. K.</creatorcontrib><creatorcontrib>Sthuthi, B.</creatorcontrib><creatorcontrib>Pavithra, R.</creatorcontrib><creatorcontrib>Raghavendra</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dhruva, N.</au><au>Rupanagudi, Sudhir Rao</au><au>Sachin, S. K.</au><au>Sthuthi, B.</au><au>Pavithra, R.</au><au>Raghavendra</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Novel segmentation algorithm for hand gesture recognition</atitle><btitle>2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)</btitle><stitle>iMac4s</stitle><date>2013-03</date><risdate>2013</risdate><spage>383</spage><epage>388</epage><pages>383-388</pages><isbn>1467350893</isbn><isbn>9781467350891</isbn><eisbn>9781467350907</eisbn><eisbn>1467350907</eisbn><eisbn>9781467350884</eisbn><eisbn>1467350885</eisbn><abstract>Sign language is the most important methodology using which hearing and speech impaired people can interact with the rest of the world. Conversation with hearing impaired individuals gets complicated if the listener is ignorant of sign language. Hence it becomes important to construct a bridge between these two banks. Many sign language and hand gesture recognition algorithms have been developed in the recent years, to assist people who do not have knowledge of sign language to converse with the speech impaired but very few with good results exist. One of the major concerns with respect to hand gesture recognition is segregation or segmentation of the hand and identifying the gesture. This paper explores the various possible ways of segmentation using different color spaces and models and presents the best algorithm with highest accuracy to perform the same. Various experiments were conducted for over 500 different gestures and an accuracy of around 97.4% was achieved with the segmentation algorithm selected. The algorithms were implemented in MATLAB programming language on MATLAB 7.14.0.739 build R2012a.</abstract><pub>IEEE</pub><doi>10.1109/iMac4s.2013.6526441</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467350893
ispartof 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), 2013, p.383-388
issn
language eng
recordid cdi_ieee_primary_6526441
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
American Sign Language (ASL)
Assistive technology
French Sign Language (FSL)
Gesture recognition
Hand Gesture Recognition
HSI color space
Image color analysis
Image Processing
Image segmentation
RGB color space
Segmentation
Sign Language Recognition
Thumb
Y'CbCr color space
title Novel segmentation algorithm for hand gesture recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Novel%20segmentation%20algorithm%20for%20hand%20gesture%20recognition&rft.btitle=2013%20International%20Mutli-Conference%20on%20Automation,%20Computing,%20Communication,%20Control%20and%20Compressed%20Sensing%20(iMac4s)&rft.au=Dhruva,%20N.&rft.date=2013-03&rft.spage=383&rft.epage=388&rft.pages=383-388&rft.isbn=1467350893&rft.isbn_list=9781467350891&rft_id=info:doi/10.1109/iMac4s.2013.6526441&rft_dat=%3Cieee_6IE%3E6526441%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467350907&rft.eisbn_list=1467350907&rft.eisbn_list=9781467350884&rft.eisbn_list=1467350885&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6526441&rfr_iscdi=true