Citrus yellow mite image recognition based on BP neural network
BP neural network has strong fault tolerance and adaptive learning ability, it is widely used in the field of digital image recognition. This paper, aiming at the problem of the citrus Eotetranychus automatic identification, using extraction methods based on the morphological features of the skeleto...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2223 |
---|---|
container_issue | |
container_start_page | 2220 |
container_title | |
container_volume | |
creator | Huanliang Xiong Canghai Wu Qiangqiang Zhou |
description | BP neural network has strong fault tolerance and adaptive learning ability, it is widely used in the field of digital image recognition. This paper, aiming at the problem of the citrus Eotetranychus automatic identification, using extraction methods based on the morphological features of the skeleton, automatically extracted citrus Eotetranychus's skeleton mathematical morphological characteristics, which were used as BP neural network input factors, achieved citrus Eotetranychus identification better. |
doi_str_mv | 10.1109/ICCSNT.2012.6526359 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6526359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6526359</ieee_id><sourcerecordid>6526359</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a62253f0fdd6ec44e333ecaa9c9e2d9169529f2b4f3db548c08b2e920ec5c3f63</originalsourceid><addsrcrecordid>eNpFj19LwzAUxSMiqHOfYC_5Aq3JvUnaPIkW_wyGCs7nkaY3I9q1knaMfXsLDnz6nfNwDucwtpAil1LY22VVfbyucxAScqPBoLZn7FoqUyBYo-z5v0FxyebD8CWEmKKmKPGK3VVxTPuBH6lt-wPfxZF43Lkt8US-33ZxjH3HazdQwyfx8M472ifXThgPffq-YRfBtQPNT5yxz6fHdfWSrd6el9X9Kouy0GPmDIDGIELTGPJKESKSd856S9BYaawGG6BWAZtaq9KLsgayIMhrj8HgjC3-eiMRbX7StDEdN6fD-At6mkpr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Citrus yellow mite image recognition based on BP neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huanliang Xiong ; Canghai Wu ; Qiangqiang Zhou</creator><creatorcontrib>Huanliang Xiong ; Canghai Wu ; Qiangqiang Zhou</creatorcontrib><description>BP neural network has strong fault tolerance and adaptive learning ability, it is widely used in the field of digital image recognition. This paper, aiming at the problem of the citrus Eotetranychus automatic identification, using extraction methods based on the morphological features of the skeleton, automatically extracted citrus Eotetranychus's skeleton mathematical morphological characteristics, which were used as BP neural network input factors, achieved citrus Eotetranychus identification better.</description><identifier>ISBN: 1467329630</identifier><identifier>ISBN: 9781467329637</identifier><identifier>EISBN: 1467329649</identifier><identifier>EISBN: 9781467329644</identifier><identifier>EISBN: 9781467329620</identifier><identifier>EISBN: 1467329622</identifier><identifier>DOI: 10.1109/ICCSNT.2012.6526359</identifier><language>eng</language><publisher>IEEE</publisher><subject>citrus yellow mite ; image recognition ; neural network</subject><ispartof>Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, 2012, p.2220-2223</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6526359$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6526359$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huanliang Xiong</creatorcontrib><creatorcontrib>Canghai Wu</creatorcontrib><creatorcontrib>Qiangqiang Zhou</creatorcontrib><title>Citrus yellow mite image recognition based on BP neural network</title><title>Proceedings of 2012 2nd International Conference on Computer Science and Network Technology</title><addtitle>ICCSNT</addtitle><description>BP neural network has strong fault tolerance and adaptive learning ability, it is widely used in the field of digital image recognition. This paper, aiming at the problem of the citrus Eotetranychus automatic identification, using extraction methods based on the morphological features of the skeleton, automatically extracted citrus Eotetranychus's skeleton mathematical morphological characteristics, which were used as BP neural network input factors, achieved citrus Eotetranychus identification better.</description><subject>citrus yellow mite</subject><subject>image recognition</subject><subject>neural network</subject><isbn>1467329630</isbn><isbn>9781467329637</isbn><isbn>1467329649</isbn><isbn>9781467329644</isbn><isbn>9781467329620</isbn><isbn>1467329622</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj19LwzAUxSMiqHOfYC_5Aq3JvUnaPIkW_wyGCs7nkaY3I9q1knaMfXsLDnz6nfNwDucwtpAil1LY22VVfbyucxAScqPBoLZn7FoqUyBYo-z5v0FxyebD8CWEmKKmKPGK3VVxTPuBH6lt-wPfxZF43Lkt8US-33ZxjH3HazdQwyfx8M472ifXThgPffq-YRfBtQPNT5yxz6fHdfWSrd6el9X9Kouy0GPmDIDGIELTGPJKESKSd856S9BYaawGG6BWAZtaq9KLsgayIMhrj8HgjC3-eiMRbX7StDEdN6fD-At6mkpr</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Huanliang Xiong</creator><creator>Canghai Wu</creator><creator>Qiangqiang Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Citrus yellow mite image recognition based on BP neural network</title><author>Huanliang Xiong ; Canghai Wu ; Qiangqiang Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a62253f0fdd6ec44e333ecaa9c9e2d9169529f2b4f3db548c08b2e920ec5c3f63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>citrus yellow mite</topic><topic>image recognition</topic><topic>neural network</topic><toplevel>online_resources</toplevel><creatorcontrib>Huanliang Xiong</creatorcontrib><creatorcontrib>Canghai Wu</creatorcontrib><creatorcontrib>Qiangqiang Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huanliang Xiong</au><au>Canghai Wu</au><au>Qiangqiang Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Citrus yellow mite image recognition based on BP neural network</atitle><btitle>Proceedings of 2012 2nd International Conference on Computer Science and Network Technology</btitle><stitle>ICCSNT</stitle><date>2012-12</date><risdate>2012</risdate><spage>2220</spage><epage>2223</epage><pages>2220-2223</pages><isbn>1467329630</isbn><isbn>9781467329637</isbn><eisbn>1467329649</eisbn><eisbn>9781467329644</eisbn><eisbn>9781467329620</eisbn><eisbn>1467329622</eisbn><abstract>BP neural network has strong fault tolerance and adaptive learning ability, it is widely used in the field of digital image recognition. This paper, aiming at the problem of the citrus Eotetranychus automatic identification, using extraction methods based on the morphological features of the skeleton, automatically extracted citrus Eotetranychus's skeleton mathematical morphological characteristics, which were used as BP neural network input factors, achieved citrus Eotetranychus identification better.</abstract><pub>IEEE</pub><doi>10.1109/ICCSNT.2012.6526359</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467329630 |
ispartof | Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, 2012, p.2220-2223 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6526359 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | citrus yellow mite image recognition neural network |
title | Citrus yellow mite image recognition based on BP neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Citrus%20yellow%20mite%20image%20recognition%20based%20on%20BP%20neural%20network&rft.btitle=Proceedings%20of%202012%202nd%20International%20Conference%20on%20Computer%20Science%20and%20Network%20Technology&rft.au=Huanliang%20Xiong&rft.date=2012-12&rft.spage=2220&rft.epage=2223&rft.pages=2220-2223&rft.isbn=1467329630&rft.isbn_list=9781467329637&rft_id=info:doi/10.1109/ICCSNT.2012.6526359&rft_dat=%3Cieee_6IE%3E6526359%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467329649&rft.eisbn_list=9781467329644&rft.eisbn_list=9781467329620&rft.eisbn_list=1467329622&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6526359&rfr_iscdi=true |