Citrus yellow mite image recognition based on BP neural network

BP neural network has strong fault tolerance and adaptive learning ability, it is widely used in the field of digital image recognition. This paper, aiming at the problem of the citrus Eotetranychus automatic identification, using extraction methods based on the morphological features of the skeleto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huanliang Xiong, Canghai Wu, Qiangqiang Zhou
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2223
container_issue
container_start_page 2220
container_title
container_volume
creator Huanliang Xiong
Canghai Wu
Qiangqiang Zhou
description BP neural network has strong fault tolerance and adaptive learning ability, it is widely used in the field of digital image recognition. This paper, aiming at the problem of the citrus Eotetranychus automatic identification, using extraction methods based on the morphological features of the skeleton, automatically extracted citrus Eotetranychus's skeleton mathematical morphological characteristics, which were used as BP neural network input factors, achieved citrus Eotetranychus identification better.
doi_str_mv 10.1109/ICCSNT.2012.6526359
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6526359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6526359</ieee_id><sourcerecordid>6526359</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a62253f0fdd6ec44e333ecaa9c9e2d9169529f2b4f3db548c08b2e920ec5c3f63</originalsourceid><addsrcrecordid>eNpFj19LwzAUxSMiqHOfYC_5Aq3JvUnaPIkW_wyGCs7nkaY3I9q1knaMfXsLDnz6nfNwDucwtpAil1LY22VVfbyucxAScqPBoLZn7FoqUyBYo-z5v0FxyebD8CWEmKKmKPGK3VVxTPuBH6lt-wPfxZF43Lkt8US-33ZxjH3HazdQwyfx8M472ifXThgPffq-YRfBtQPNT5yxz6fHdfWSrd6el9X9Kouy0GPmDIDGIELTGPJKESKSd856S9BYaawGG6BWAZtaq9KLsgayIMhrj8HgjC3-eiMRbX7StDEdN6fD-At6mkpr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Citrus yellow mite image recognition based on BP neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huanliang Xiong ; Canghai Wu ; Qiangqiang Zhou</creator><creatorcontrib>Huanliang Xiong ; Canghai Wu ; Qiangqiang Zhou</creatorcontrib><description>BP neural network has strong fault tolerance and adaptive learning ability, it is widely used in the field of digital image recognition. This paper, aiming at the problem of the citrus Eotetranychus automatic identification, using extraction methods based on the morphological features of the skeleton, automatically extracted citrus Eotetranychus's skeleton mathematical morphological characteristics, which were used as BP neural network input factors, achieved citrus Eotetranychus identification better.</description><identifier>ISBN: 1467329630</identifier><identifier>ISBN: 9781467329637</identifier><identifier>EISBN: 1467329649</identifier><identifier>EISBN: 9781467329644</identifier><identifier>EISBN: 9781467329620</identifier><identifier>EISBN: 1467329622</identifier><identifier>DOI: 10.1109/ICCSNT.2012.6526359</identifier><language>eng</language><publisher>IEEE</publisher><subject>citrus yellow mite ; image recognition ; neural network</subject><ispartof>Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, 2012, p.2220-2223</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6526359$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6526359$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huanliang Xiong</creatorcontrib><creatorcontrib>Canghai Wu</creatorcontrib><creatorcontrib>Qiangqiang Zhou</creatorcontrib><title>Citrus yellow mite image recognition based on BP neural network</title><title>Proceedings of 2012 2nd International Conference on Computer Science and Network Technology</title><addtitle>ICCSNT</addtitle><description>BP neural network has strong fault tolerance and adaptive learning ability, it is widely used in the field of digital image recognition. This paper, aiming at the problem of the citrus Eotetranychus automatic identification, using extraction methods based on the morphological features of the skeleton, automatically extracted citrus Eotetranychus's skeleton mathematical morphological characteristics, which were used as BP neural network input factors, achieved citrus Eotetranychus identification better.</description><subject>citrus yellow mite</subject><subject>image recognition</subject><subject>neural network</subject><isbn>1467329630</isbn><isbn>9781467329637</isbn><isbn>1467329649</isbn><isbn>9781467329644</isbn><isbn>9781467329620</isbn><isbn>1467329622</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj19LwzAUxSMiqHOfYC_5Aq3JvUnaPIkW_wyGCs7nkaY3I9q1knaMfXsLDnz6nfNwDucwtpAil1LY22VVfbyucxAScqPBoLZn7FoqUyBYo-z5v0FxyebD8CWEmKKmKPGK3VVxTPuBH6lt-wPfxZF43Lkt8US-33ZxjH3HazdQwyfx8M472ifXThgPffq-YRfBtQPNT5yxz6fHdfWSrd6el9X9Kouy0GPmDIDGIELTGPJKESKSd856S9BYaawGG6BWAZtaq9KLsgayIMhrj8HgjC3-eiMRbX7StDEdN6fD-At6mkpr</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Huanliang Xiong</creator><creator>Canghai Wu</creator><creator>Qiangqiang Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Citrus yellow mite image recognition based on BP neural network</title><author>Huanliang Xiong ; Canghai Wu ; Qiangqiang Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a62253f0fdd6ec44e333ecaa9c9e2d9169529f2b4f3db548c08b2e920ec5c3f63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>citrus yellow mite</topic><topic>image recognition</topic><topic>neural network</topic><toplevel>online_resources</toplevel><creatorcontrib>Huanliang Xiong</creatorcontrib><creatorcontrib>Canghai Wu</creatorcontrib><creatorcontrib>Qiangqiang Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huanliang Xiong</au><au>Canghai Wu</au><au>Qiangqiang Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Citrus yellow mite image recognition based on BP neural network</atitle><btitle>Proceedings of 2012 2nd International Conference on Computer Science and Network Technology</btitle><stitle>ICCSNT</stitle><date>2012-12</date><risdate>2012</risdate><spage>2220</spage><epage>2223</epage><pages>2220-2223</pages><isbn>1467329630</isbn><isbn>9781467329637</isbn><eisbn>1467329649</eisbn><eisbn>9781467329644</eisbn><eisbn>9781467329620</eisbn><eisbn>1467329622</eisbn><abstract>BP neural network has strong fault tolerance and adaptive learning ability, it is widely used in the field of digital image recognition. This paper, aiming at the problem of the citrus Eotetranychus automatic identification, using extraction methods based on the morphological features of the skeleton, automatically extracted citrus Eotetranychus's skeleton mathematical morphological characteristics, which were used as BP neural network input factors, achieved citrus Eotetranychus identification better.</abstract><pub>IEEE</pub><doi>10.1109/ICCSNT.2012.6526359</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467329630
ispartof Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, 2012, p.2220-2223
issn
language eng
recordid cdi_ieee_primary_6526359
source IEEE Electronic Library (IEL) Conference Proceedings
subjects citrus yellow mite
image recognition
neural network
title Citrus yellow mite image recognition based on BP neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Citrus%20yellow%20mite%20image%20recognition%20based%20on%20BP%20neural%20network&rft.btitle=Proceedings%20of%202012%202nd%20International%20Conference%20on%20Computer%20Science%20and%20Network%20Technology&rft.au=Huanliang%20Xiong&rft.date=2012-12&rft.spage=2220&rft.epage=2223&rft.pages=2220-2223&rft.isbn=1467329630&rft.isbn_list=9781467329637&rft_id=info:doi/10.1109/ICCSNT.2012.6526359&rft_dat=%3Cieee_6IE%3E6526359%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467329649&rft.eisbn_list=9781467329644&rft.eisbn_list=9781467329620&rft.eisbn_list=1467329622&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6526359&rfr_iscdi=true