Feature extraction of X-ray chest image based on KPCA
In view of the nonlinear image information loss and lack of characteristics which is caused by principal component analysis in the feature extraction process, an X-ray chest image feature extraction method based on KPCA is proposed. Original feature space is mapped by kernel function to a new space...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1266 |
---|---|
container_issue | |
container_start_page | 1263 |
container_title | |
container_volume | |
creator | Wencheng Cui Shuang Chen Tianshu Yu Lijie Ren |
description | In view of the nonlinear image information loss and lack of characteristics which is caused by principal component analysis in the feature extraction process, an X-ray chest image feature extraction method based on KPCA is proposed. Original feature space is mapped by kernel function to a new space where dimension reduction is implemented and features are extracted, and then nonlinear information is converted to linear information in the feature space. This method reduces feature dimension considerably while it maintains adequate original X-ray chest image information. Experimental results show that this method can enhance retrieval accuracy and has better performance than principal component analysis. |
doi_str_mv | 10.1109/ICCSNT.2012.6526153 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6526153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6526153</ieee_id><sourcerecordid>6526153</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8af7e95cdab7232652598a3d5fe649b8ae0164d52dbb435eaa387d6ee98efd4a3</originalsourceid><addsrcrecordid>eNpFj9tKAzEYhCMiqLVP0Ju8wK45Hy5LsFosWmgF78q_mz-6olaSCPbtXbDg1TAMM3xDyIyzlnPmr5chbB62rWBctEYLw7U8IZdcGSuFN8qf_hvJzsm0lDfG2Fg11skLohcI9TsjxZ-aoa_D_pPuE31uMhxo_4ql0uEDXpB2UDDSMb1fh_kVOUvwXnB61Al5Wtxsw12zerxdhvmqGbjVtXGQLHrdR-iskGLE096BjDrhSNY5QMaNilrErlNSI4B0NhpE7zBFBXJCZn-7AyLuvvKIkg-74035C4HsRdI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature extraction of X-ray chest image based on KPCA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wencheng Cui ; Shuang Chen ; Tianshu Yu ; Lijie Ren</creator><creatorcontrib>Wencheng Cui ; Shuang Chen ; Tianshu Yu ; Lijie Ren</creatorcontrib><description>In view of the nonlinear image information loss and lack of characteristics which is caused by principal component analysis in the feature extraction process, an X-ray chest image feature extraction method based on KPCA is proposed. Original feature space is mapped by kernel function to a new space where dimension reduction is implemented and features are extracted, and then nonlinear information is converted to linear information in the feature space. This method reduces feature dimension considerably while it maintains adequate original X-ray chest image information. Experimental results show that this method can enhance retrieval accuracy and has better performance than principal component analysis.</description><identifier>ISBN: 1467329630</identifier><identifier>ISBN: 9781467329637</identifier><identifier>EISBN: 1467329649</identifier><identifier>EISBN: 9781467329644</identifier><identifier>EISBN: 9781467329620</identifier><identifier>EISBN: 1467329622</identifier><identifier>DOI: 10.1109/ICCSNT.2012.6526153</identifier><language>eng</language><publisher>IEEE</publisher><subject>feature extraction ; kernel principal component analysis ; reduce dimensions ; X-ray image</subject><ispartof>Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, 2012, p.1263-1266</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6526153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6526153$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wencheng Cui</creatorcontrib><creatorcontrib>Shuang Chen</creatorcontrib><creatorcontrib>Tianshu Yu</creatorcontrib><creatorcontrib>Lijie Ren</creatorcontrib><title>Feature extraction of X-ray chest image based on KPCA</title><title>Proceedings of 2012 2nd International Conference on Computer Science and Network Technology</title><addtitle>ICCSNT</addtitle><description>In view of the nonlinear image information loss and lack of characteristics which is caused by principal component analysis in the feature extraction process, an X-ray chest image feature extraction method based on KPCA is proposed. Original feature space is mapped by kernel function to a new space where dimension reduction is implemented and features are extracted, and then nonlinear information is converted to linear information in the feature space. This method reduces feature dimension considerably while it maintains adequate original X-ray chest image information. Experimental results show that this method can enhance retrieval accuracy and has better performance than principal component analysis.</description><subject>feature extraction</subject><subject>kernel principal component analysis</subject><subject>reduce dimensions</subject><subject>X-ray image</subject><isbn>1467329630</isbn><isbn>9781467329637</isbn><isbn>1467329649</isbn><isbn>9781467329644</isbn><isbn>9781467329620</isbn><isbn>1467329622</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj9tKAzEYhCMiqLVP0Ju8wK45Hy5LsFosWmgF78q_mz-6olaSCPbtXbDg1TAMM3xDyIyzlnPmr5chbB62rWBctEYLw7U8IZdcGSuFN8qf_hvJzsm0lDfG2Fg11skLohcI9TsjxZ-aoa_D_pPuE31uMhxo_4ql0uEDXpB2UDDSMb1fh_kVOUvwXnB61Al5Wtxsw12zerxdhvmqGbjVtXGQLHrdR-iskGLE096BjDrhSNY5QMaNilrErlNSI4B0NhpE7zBFBXJCZn-7AyLuvvKIkg-74035C4HsRdI</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Wencheng Cui</creator><creator>Shuang Chen</creator><creator>Tianshu Yu</creator><creator>Lijie Ren</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Feature extraction of X-ray chest image based on KPCA</title><author>Wencheng Cui ; Shuang Chen ; Tianshu Yu ; Lijie Ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8af7e95cdab7232652598a3d5fe649b8ae0164d52dbb435eaa387d6ee98efd4a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>feature extraction</topic><topic>kernel principal component analysis</topic><topic>reduce dimensions</topic><topic>X-ray image</topic><toplevel>online_resources</toplevel><creatorcontrib>Wencheng Cui</creatorcontrib><creatorcontrib>Shuang Chen</creatorcontrib><creatorcontrib>Tianshu Yu</creatorcontrib><creatorcontrib>Lijie Ren</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wencheng Cui</au><au>Shuang Chen</au><au>Tianshu Yu</au><au>Lijie Ren</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature extraction of X-ray chest image based on KPCA</atitle><btitle>Proceedings of 2012 2nd International Conference on Computer Science and Network Technology</btitle><stitle>ICCSNT</stitle><date>2012-12</date><risdate>2012</risdate><spage>1263</spage><epage>1266</epage><pages>1263-1266</pages><isbn>1467329630</isbn><isbn>9781467329637</isbn><eisbn>1467329649</eisbn><eisbn>9781467329644</eisbn><eisbn>9781467329620</eisbn><eisbn>1467329622</eisbn><abstract>In view of the nonlinear image information loss and lack of characteristics which is caused by principal component analysis in the feature extraction process, an X-ray chest image feature extraction method based on KPCA is proposed. Original feature space is mapped by kernel function to a new space where dimension reduction is implemented and features are extracted, and then nonlinear information is converted to linear information in the feature space. This method reduces feature dimension considerably while it maintains adequate original X-ray chest image information. Experimental results show that this method can enhance retrieval accuracy and has better performance than principal component analysis.</abstract><pub>IEEE</pub><doi>10.1109/ICCSNT.2012.6526153</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467329630 |
ispartof | Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, 2012, p.1263-1266 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6526153 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | feature extraction kernel principal component analysis reduce dimensions X-ray image |
title | Feature extraction of X-ray chest image based on KPCA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20extraction%20of%20X-ray%20chest%20image%20based%20on%20KPCA&rft.btitle=Proceedings%20of%202012%202nd%20International%20Conference%20on%20Computer%20Science%20and%20Network%20Technology&rft.au=Wencheng%20Cui&rft.date=2012-12&rft.spage=1263&rft.epage=1266&rft.pages=1263-1266&rft.isbn=1467329630&rft.isbn_list=9781467329637&rft_id=info:doi/10.1109/ICCSNT.2012.6526153&rft_dat=%3Cieee_6IE%3E6526153%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467329649&rft.eisbn_list=9781467329644&rft.eisbn_list=9781467329620&rft.eisbn_list=1467329622&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6526153&rfr_iscdi=true |