Time varying feedback synthesis for a class of non-homogeneous systems

This paper demonstrates that a previously introduced differential geometric approach to the synthesis of time varying stabilizing feedback controls for homogeneous systems (systems without drift) also applies to a wide class of non-homogeneous systems (systems with drift). The approach is universal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Michalska, H., Rehman, F.U.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4021 vol.4
container_issue
container_start_page 4018
container_title
container_volume 4
creator Michalska, H.
Rehman, F.U.
description This paper demonstrates that a previously introduced differential geometric approach to the synthesis of time varying stabilizing feedback controls for homogeneous systems (systems without drift) also applies to a wide class of non-homogeneous systems (systems with drift). The approach is universal in the sense that it is independent of the vector fields determining the motion of the system, or of the choice of a Lyapunov function. The proposed feedback law is a composition of a standard stabilizing feedback control for a Lie bracket extension of the original system and a periodic continuation of a specific solution to an open loop control problem stated for an abstract equation on a Lie group, an equation which describes the evolution of flows of both the original and extended systems. The open loop problem is solved as a trajectory interception problem in logarithmic coordinates of flows.
doi_str_mv 10.1109/CDC.1997.652494
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_652494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>652494</ieee_id><sourcerecordid>652494</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-9051522c6374cbc9b8e79b28ac3a177e3251998a9385883ac493cad52689f1e93</originalsourceid><addsrcrecordid>eNotj0tLAzEURgNasA_Xgqv8gRlzk8njLmW0KhTc1HXJpHfaaGcik1Hov3egrs7m4_Adxu5AlAACH-qnugREWxotK6yu2EJYJ1QFzsprNheAUEgJ5oYtcv4UQjhhzJytt7Ej_uuHc-wPvCXaNz588XzuxyPlmHmbBu55OPmceWp5n_rimLp0oJ7ST56GeaQur9is9adMt_9cso_187Z-LTbvL2_146aIYOVYoNCgpQxG2So0ARtHFhvpfFAerCUl9dTgPCqnnVM-VKiC32tpHLZAqJbs_uKNRLT7HmI3Pd9dktUfVMpJ0Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time varying feedback synthesis for a class of non-homogeneous systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Michalska, H. ; Rehman, F.U.</creator><creatorcontrib>Michalska, H. ; Rehman, F.U.</creatorcontrib><description>This paper demonstrates that a previously introduced differential geometric approach to the synthesis of time varying stabilizing feedback controls for homogeneous systems (systems without drift) also applies to a wide class of non-homogeneous systems (systems with drift). The approach is universal in the sense that it is independent of the vector fields determining the motion of the system, or of the choice of a Lyapunov function. The proposed feedback law is a composition of a standard stabilizing feedback control for a Lie bracket extension of the original system and a periodic continuation of a specific solution to an open loop control problem stated for an abstract equation on a Lie group, an equation which describes the evolution of flows of both the original and extended systems. The open loop problem is solved as a trajectory interception problem in logarithmic coordinates of flows.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 0780341872</identifier><identifier>ISBN: 9780780341876</identifier><identifier>DOI: 10.1109/CDC.1997.652494</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Control system synthesis ; Control systems ; Equations ; Feedback control ; Feedback loop ; Open loop systems ; State feedback ; Symmetric matrices ; Time varying systems</subject><ispartof>Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.4, p.4018-4021 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/652494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/652494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Michalska, H.</creatorcontrib><creatorcontrib>Rehman, F.U.</creatorcontrib><title>Time varying feedback synthesis for a class of non-homogeneous systems</title><title>Proceedings of the 36th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>This paper demonstrates that a previously introduced differential geometric approach to the synthesis of time varying stabilizing feedback controls for homogeneous systems (systems without drift) also applies to a wide class of non-homogeneous systems (systems with drift). The approach is universal in the sense that it is independent of the vector fields determining the motion of the system, or of the choice of a Lyapunov function. The proposed feedback law is a composition of a standard stabilizing feedback control for a Lie bracket extension of the original system and a periodic continuation of a specific solution to an open loop control problem stated for an abstract equation on a Lie group, an equation which describes the evolution of flows of both the original and extended systems. The open loop problem is solved as a trajectory interception problem in logarithmic coordinates of flows.</description><subject>Algebra</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Equations</subject><subject>Feedback control</subject><subject>Feedback loop</subject><subject>Open loop systems</subject><subject>State feedback</subject><subject>Symmetric matrices</subject><subject>Time varying systems</subject><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLAzEURgNasA_Xgqv8gRlzk8njLmW0KhTc1HXJpHfaaGcik1Hov3egrs7m4_Adxu5AlAACH-qnugREWxotK6yu2EJYJ1QFzsprNheAUEgJ5oYtcv4UQjhhzJytt7Ej_uuHc-wPvCXaNz588XzuxyPlmHmbBu55OPmceWp5n_rimLp0oJ7ST56GeaQur9is9adMt_9cso_187Z-LTbvL2_146aIYOVYoNCgpQxG2So0ARtHFhvpfFAerCUl9dTgPCqnnVM-VKiC32tpHLZAqJbs_uKNRLT7HmI3Pd9dktUfVMpJ0Q</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Michalska, H.</creator><creator>Rehman, F.U.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Time varying feedback synthesis for a class of non-homogeneous systems</title><author>Michalska, H. ; Rehman, F.U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-9051522c6374cbc9b8e79b28ac3a177e3251998a9385883ac493cad52689f1e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algebra</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Equations</topic><topic>Feedback control</topic><topic>Feedback loop</topic><topic>Open loop systems</topic><topic>State feedback</topic><topic>Symmetric matrices</topic><topic>Time varying systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Michalska, H.</creatorcontrib><creatorcontrib>Rehman, F.U.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Michalska, H.</au><au>Rehman, F.U.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time varying feedback synthesis for a class of non-homogeneous systems</atitle><btitle>Proceedings of the 36th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>1997</date><risdate>1997</risdate><volume>4</volume><spage>4018</spage><epage>4021 vol.4</epage><pages>4018-4021 vol.4</pages><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><abstract>This paper demonstrates that a previously introduced differential geometric approach to the synthesis of time varying stabilizing feedback controls for homogeneous systems (systems without drift) also applies to a wide class of non-homogeneous systems (systems with drift). The approach is universal in the sense that it is independent of the vector fields determining the motion of the system, or of the choice of a Lyapunov function. The proposed feedback law is a composition of a standard stabilizing feedback control for a Lie bracket extension of the original system and a periodic continuation of a specific solution to an open loop control problem stated for an abstract equation on a Lie group, an equation which describes the evolution of flows of both the original and extended systems. The open loop problem is solved as a trajectory interception problem in logarithmic coordinates of flows.</abstract><pub>IEEE</pub><doi>10.1109/CDC.1997.652494</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.4, p.4018-4021 vol.4
issn 0191-2216
language eng
recordid cdi_ieee_primary_652494
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algebra
Control system synthesis
Control systems
Equations
Feedback control
Feedback loop
Open loop systems
State feedback
Symmetric matrices
Time varying systems
title Time varying feedback synthesis for a class of non-homogeneous systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time%20varying%20feedback%20synthesis%20for%20a%20class%20of%20non-homogeneous%20systems&rft.btitle=Proceedings%20of%20the%2036th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Michalska,%20H.&rft.date=1997&rft.volume=4&rft.spage=4018&rft.epage=4021%20vol.4&rft.pages=4018-4021%20vol.4&rft.issn=0191-2216&rft.isbn=0780341872&rft.isbn_list=9780780341876&rft_id=info:doi/10.1109/CDC.1997.652494&rft_dat=%3Cieee_6IE%3E652494%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=652494&rfr_iscdi=true