Time varying feedback synthesis for a class of non-homogeneous systems
This paper demonstrates that a previously introduced differential geometric approach to the synthesis of time varying stabilizing feedback controls for homogeneous systems (systems without drift) also applies to a wide class of non-homogeneous systems (systems with drift). The approach is universal...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4021 vol.4 |
---|---|
container_issue | |
container_start_page | 4018 |
container_title | |
container_volume | 4 |
creator | Michalska, H. Rehman, F.U. |
description | This paper demonstrates that a previously introduced differential geometric approach to the synthesis of time varying stabilizing feedback controls for homogeneous systems (systems without drift) also applies to a wide class of non-homogeneous systems (systems with drift). The approach is universal in the sense that it is independent of the vector fields determining the motion of the system, or of the choice of a Lyapunov function. The proposed feedback law is a composition of a standard stabilizing feedback control for a Lie bracket extension of the original system and a periodic continuation of a specific solution to an open loop control problem stated for an abstract equation on a Lie group, an equation which describes the evolution of flows of both the original and extended systems. The open loop problem is solved as a trajectory interception problem in logarithmic coordinates of flows. |
doi_str_mv | 10.1109/CDC.1997.652494 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_652494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>652494</ieee_id><sourcerecordid>652494</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-9051522c6374cbc9b8e79b28ac3a177e3251998a9385883ac493cad52689f1e93</originalsourceid><addsrcrecordid>eNotj0tLAzEURgNasA_Xgqv8gRlzk8njLmW0KhTc1HXJpHfaaGcik1Hov3egrs7m4_Adxu5AlAACH-qnugREWxotK6yu2EJYJ1QFzsprNheAUEgJ5oYtcv4UQjhhzJytt7Ej_uuHc-wPvCXaNz588XzuxyPlmHmbBu55OPmceWp5n_rimLp0oJ7ST56GeaQur9is9adMt_9cso_187Z-LTbvL2_146aIYOVYoNCgpQxG2So0ARtHFhvpfFAerCUl9dTgPCqnnVM-VKiC32tpHLZAqJbs_uKNRLT7HmI3Pd9dktUfVMpJ0Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time varying feedback synthesis for a class of non-homogeneous systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Michalska, H. ; Rehman, F.U.</creator><creatorcontrib>Michalska, H. ; Rehman, F.U.</creatorcontrib><description>This paper demonstrates that a previously introduced differential geometric approach to the synthesis of time varying stabilizing feedback controls for homogeneous systems (systems without drift) also applies to a wide class of non-homogeneous systems (systems with drift). The approach is universal in the sense that it is independent of the vector fields determining the motion of the system, or of the choice of a Lyapunov function. The proposed feedback law is a composition of a standard stabilizing feedback control for a Lie bracket extension of the original system and a periodic continuation of a specific solution to an open loop control problem stated for an abstract equation on a Lie group, an equation which describes the evolution of flows of both the original and extended systems. The open loop problem is solved as a trajectory interception problem in logarithmic coordinates of flows.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 0780341872</identifier><identifier>ISBN: 9780780341876</identifier><identifier>DOI: 10.1109/CDC.1997.652494</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Control system synthesis ; Control systems ; Equations ; Feedback control ; Feedback loop ; Open loop systems ; State feedback ; Symmetric matrices ; Time varying systems</subject><ispartof>Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.4, p.4018-4021 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/652494$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/652494$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Michalska, H.</creatorcontrib><creatorcontrib>Rehman, F.U.</creatorcontrib><title>Time varying feedback synthesis for a class of non-homogeneous systems</title><title>Proceedings of the 36th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>This paper demonstrates that a previously introduced differential geometric approach to the synthesis of time varying stabilizing feedback controls for homogeneous systems (systems without drift) also applies to a wide class of non-homogeneous systems (systems with drift). The approach is universal in the sense that it is independent of the vector fields determining the motion of the system, or of the choice of a Lyapunov function. The proposed feedback law is a composition of a standard stabilizing feedback control for a Lie bracket extension of the original system and a periodic continuation of a specific solution to an open loop control problem stated for an abstract equation on a Lie group, an equation which describes the evolution of flows of both the original and extended systems. The open loop problem is solved as a trajectory interception problem in logarithmic coordinates of flows.</description><subject>Algebra</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Equations</subject><subject>Feedback control</subject><subject>Feedback loop</subject><subject>Open loop systems</subject><subject>State feedback</subject><subject>Symmetric matrices</subject><subject>Time varying systems</subject><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLAzEURgNasA_Xgqv8gRlzk8njLmW0KhTc1HXJpHfaaGcik1Hov3egrs7m4_Adxu5AlAACH-qnugREWxotK6yu2EJYJ1QFzsprNheAUEgJ5oYtcv4UQjhhzJytt7Ej_uuHc-wPvCXaNz588XzuxyPlmHmbBu55OPmceWp5n_rimLp0oJ7ST56GeaQur9is9adMt_9cso_187Z-LTbvL2_146aIYOVYoNCgpQxG2So0ARtHFhvpfFAerCUl9dTgPCqnnVM-VKiC32tpHLZAqJbs_uKNRLT7HmI3Pd9dktUfVMpJ0Q</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Michalska, H.</creator><creator>Rehman, F.U.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Time varying feedback synthesis for a class of non-homogeneous systems</title><author>Michalska, H. ; Rehman, F.U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-9051522c6374cbc9b8e79b28ac3a177e3251998a9385883ac493cad52689f1e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algebra</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Equations</topic><topic>Feedback control</topic><topic>Feedback loop</topic><topic>Open loop systems</topic><topic>State feedback</topic><topic>Symmetric matrices</topic><topic>Time varying systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Michalska, H.</creatorcontrib><creatorcontrib>Rehman, F.U.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Michalska, H.</au><au>Rehman, F.U.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time varying feedback synthesis for a class of non-homogeneous systems</atitle><btitle>Proceedings of the 36th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>1997</date><risdate>1997</risdate><volume>4</volume><spage>4018</spage><epage>4021 vol.4</epage><pages>4018-4021 vol.4</pages><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><abstract>This paper demonstrates that a previously introduced differential geometric approach to the synthesis of time varying stabilizing feedback controls for homogeneous systems (systems without drift) also applies to a wide class of non-homogeneous systems (systems with drift). The approach is universal in the sense that it is independent of the vector fields determining the motion of the system, or of the choice of a Lyapunov function. The proposed feedback law is a composition of a standard stabilizing feedback control for a Lie bracket extension of the original system and a periodic continuation of a specific solution to an open loop control problem stated for an abstract equation on a Lie group, an equation which describes the evolution of flows of both the original and extended systems. The open loop problem is solved as a trajectory interception problem in logarithmic coordinates of flows.</abstract><pub>IEEE</pub><doi>10.1109/CDC.1997.652494</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.4, p.4018-4021 vol.4 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_652494 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algebra Control system synthesis Control systems Equations Feedback control Feedback loop Open loop systems State feedback Symmetric matrices Time varying systems |
title | Time varying feedback synthesis for a class of non-homogeneous systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time%20varying%20feedback%20synthesis%20for%20a%20class%20of%20non-homogeneous%20systems&rft.btitle=Proceedings%20of%20the%2036th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Michalska,%20H.&rft.date=1997&rft.volume=4&rft.spage=4018&rft.epage=4021%20vol.4&rft.pages=4018-4021%20vol.4&rft.issn=0191-2216&rft.isbn=0780341872&rft.isbn_list=9780780341876&rft_id=info:doi/10.1109/CDC.1997.652494&rft_dat=%3Cieee_6IE%3E652494%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=652494&rfr_iscdi=true |