Recursive estimation in hidden Markov models

We consider a hidden Markov model (HMM) with multidimensional observations, and where the coefficients (transition probability matrix, and observation conditional densities) depend on some unknown parameter. We study the asymptotic behaviour of two recursive estimators, the recursive maximum likelih...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LeGland, F., Mevel, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3473 vol.4
container_issue
container_start_page 3468
container_title
container_volume 4
creator LeGland, F.
Mevel, L.
description We consider a hidden Markov model (HMM) with multidimensional observations, and where the coefficients (transition probability matrix, and observation conditional densities) depend on some unknown parameter. We study the asymptotic behaviour of two recursive estimators, the recursive maximum likelihood estimator (RMLE), and the recursive conditional least squares estimator (RCLSE), as the number of observations increases to infinity. Firstly, we exhibit the contrast functions associated with the two non-recursive estimators, and we prove that the recursive estimators converge a.s. to the set of stationary points of the corresponding contrast function. Secondly, we prove that the two recursive estimators are asymptotically normal.
doi_str_mv 10.1109/CDC.1997.652384
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_652384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>652384</ieee_id><sourcerecordid>652384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-43c472a586ccbb1a14e09e35b931f9f40cc36b5002f07f199e4a4f81fb2190213</originalsourceid><addsrcrecordid>eNotj8tKAzEUQAMq2FbXgqt8gDPem2TyWMr4hJaC6LokmRuMtjMyGQv-vYW6OrvDOYxdIdSI4G7b-7ZG50ytGyGtOmFzMBakQmvEKZsBOqyEQH3O5qV8AoAFrWfs5pXiz1jynjiVKe_8lIee555_5K6jnq_8-DXs-W7oaFsu2Fny20KX_1yw98eHt_a5Wq6fXtq7ZRWFVlOlZFRG-MbqGENAj4rAkWyCk5hcUhCj1KEBEAlMOkST8ipZTEGgA4Fywa6P3kxEm-_xkDX-bo5j8g_8F0BK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Recursive estimation in hidden Markov models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>LeGland, F. ; Mevel, L.</creator><creatorcontrib>LeGland, F. ; Mevel, L.</creatorcontrib><description>We consider a hidden Markov model (HMM) with multidimensional observations, and where the coefficients (transition probability matrix, and observation conditional densities) depend on some unknown parameter. We study the asymptotic behaviour of two recursive estimators, the recursive maximum likelihood estimator (RMLE), and the recursive conditional least squares estimator (RCLSE), as the number of observations increases to infinity. Firstly, we exhibit the contrast functions associated with the two non-recursive estimators, and we prove that the recursive estimators converge a.s. to the set of stationary points of the corresponding contrast function. Secondly, we prove that the two recursive estimators are asymptotically normal.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 0780341872</identifier><identifier>ISBN: 9780780341876</identifier><identifier>DOI: 10.1109/CDC.1997.652384</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Covariance matrix ; Electronic mail ; Filters ; H infinity control ; Hidden Markov models ; Least squares approximation ; Maximum likelihood estimation ; Probability distribution ; Recursive estimation</subject><ispartof>Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.4, p.3468-3473 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-43c472a586ccbb1a14e09e35b931f9f40cc36b5002f07f199e4a4f81fb2190213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/652384$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/652384$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>LeGland, F.</creatorcontrib><creatorcontrib>Mevel, L.</creatorcontrib><title>Recursive estimation in hidden Markov models</title><title>Proceedings of the 36th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>We consider a hidden Markov model (HMM) with multidimensional observations, and where the coefficients (transition probability matrix, and observation conditional densities) depend on some unknown parameter. We study the asymptotic behaviour of two recursive estimators, the recursive maximum likelihood estimator (RMLE), and the recursive conditional least squares estimator (RCLSE), as the number of observations increases to infinity. Firstly, we exhibit the contrast functions associated with the two non-recursive estimators, and we prove that the recursive estimators converge a.s. to the set of stationary points of the corresponding contrast function. Secondly, we prove that the two recursive estimators are asymptotically normal.</description><subject>Convergence</subject><subject>Covariance matrix</subject><subject>Electronic mail</subject><subject>Filters</subject><subject>H infinity control</subject><subject>Hidden Markov models</subject><subject>Least squares approximation</subject><subject>Maximum likelihood estimation</subject><subject>Probability distribution</subject><subject>Recursive estimation</subject><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKAzEUQAMq2FbXgqt8gDPem2TyWMr4hJaC6LokmRuMtjMyGQv-vYW6OrvDOYxdIdSI4G7b-7ZG50ytGyGtOmFzMBakQmvEKZsBOqyEQH3O5qV8AoAFrWfs5pXiz1jynjiVKe_8lIee555_5K6jnq_8-DXs-W7oaFsu2Fny20KX_1yw98eHt_a5Wq6fXtq7ZRWFVlOlZFRG-MbqGENAj4rAkWyCk5hcUhCj1KEBEAlMOkST8ipZTEGgA4Fywa6P3kxEm-_xkDX-bo5j8g_8F0BK</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>LeGland, F.</creator><creator>Mevel, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Recursive estimation in hidden Markov models</title><author>LeGland, F. ; Mevel, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-43c472a586ccbb1a14e09e35b931f9f40cc36b5002f07f199e4a4f81fb2190213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Convergence</topic><topic>Covariance matrix</topic><topic>Electronic mail</topic><topic>Filters</topic><topic>H infinity control</topic><topic>Hidden Markov models</topic><topic>Least squares approximation</topic><topic>Maximum likelihood estimation</topic><topic>Probability distribution</topic><topic>Recursive estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>LeGland, F.</creatorcontrib><creatorcontrib>Mevel, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LeGland, F.</au><au>Mevel, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recursive estimation in hidden Markov models</atitle><btitle>Proceedings of the 36th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>1997</date><risdate>1997</risdate><volume>4</volume><spage>3468</spage><epage>3473 vol.4</epage><pages>3468-3473 vol.4</pages><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><abstract>We consider a hidden Markov model (HMM) with multidimensional observations, and where the coefficients (transition probability matrix, and observation conditional densities) depend on some unknown parameter. We study the asymptotic behaviour of two recursive estimators, the recursive maximum likelihood estimator (RMLE), and the recursive conditional least squares estimator (RCLSE), as the number of observations increases to infinity. Firstly, we exhibit the contrast functions associated with the two non-recursive estimators, and we prove that the recursive estimators converge a.s. to the set of stationary points of the corresponding contrast function. Secondly, we prove that the two recursive estimators are asymptotically normal.</abstract><pub>IEEE</pub><doi>10.1109/CDC.1997.652384</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.4, p.3468-3473 vol.4
issn 0191-2216
language eng
recordid cdi_ieee_primary_652384
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Convergence
Covariance matrix
Electronic mail
Filters
H infinity control
Hidden Markov models
Least squares approximation
Maximum likelihood estimation
Probability distribution
Recursive estimation
title Recursive estimation in hidden Markov models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recursive%20estimation%20in%20hidden%20Markov%20models&rft.btitle=Proceedings%20of%20the%2036th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=LeGland,%20F.&rft.date=1997&rft.volume=4&rft.spage=3468&rft.epage=3473%20vol.4&rft.pages=3468-3473%20vol.4&rft.issn=0191-2216&rft.isbn=0780341872&rft.isbn_list=9780780341876&rft_id=info:doi/10.1109/CDC.1997.652384&rft_dat=%3Cieee_6IE%3E652384%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=652384&rfr_iscdi=true