Parameter determination of support vector machine using scatter search approach

Support Vector Machine (SVM) is a popular data classification method with many diverse applications. SVM has many parameters, which have significant influences on the performance of SVM classifier. In this paper, a Scatter Search approach is used to find near optimal values of the SVM parameters and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Afif, M. H., Hedar, A-R, Hamid, T. H. A., Mahdy, Y. B.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue
container_start_page 181
container_title
container_volume
creator Afif, M. H.
Hedar, A-R
Hamid, T. H. A.
Mahdy, Y. B.
description Support Vector Machine (SVM) is a popular data classification method with many diverse applications. SVM has many parameters, which have significant influences on the performance of SVM classifier. In this paper, a Scatter Search approach is used to find near optimal values of the SVM parameters and its kernel parameters. The proposed method integrates a scatter search approach with support vector machine using three different kernel functions, shortly (3SVM). To evaluate the performance of the proposed method, 4 benchmark datasets are used. Experiments and comparisons prove that the 3SVM is a promising approach and has a competitive performance relative to some other published methods.
doi_str_mv 10.1109/ICCTA.2012.6523566
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6523566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6523566</ieee_id><sourcerecordid>6523566</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-42abc90286fe96d57c9ff86f7692fd37848e61b78936cc7edeb9021d92cb30023</originalsourceid><addsrcrecordid>eNpFkEtLAzEcxCMiqLVfQC_5ArvmsXkdy-KjUKiHei7Z5B8bcR8kqeC3d4sFLzMM_GYOg9A9JTWlxDyu23a3qhmhrJaCcSHlBbqljVScadbwy__AxTVa5vxJCJmbUml1g7ZvNtkeCiTsT9rHwZY4DngMOB-naUwFf4MrY8K9dYc4AD7mOHzg7Gw5tTLY5A7YTlMaZ-AOXQX7lWF59gV6f37ata_VZvuyblebKlIlStUw2zlDmJYBjPRCORPCHJQ0LHiudKNB0k5pw6VzCjx0M029Ya7jhDC-QA9_uxEA9lOKvU0_-_MB_Bc691BV</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parameter determination of support vector machine using scatter search approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Afif, M. H. ; Hedar, A-R ; Hamid, T. H. A. ; Mahdy, Y. B.</creator><creatorcontrib>Afif, M. H. ; Hedar, A-R ; Hamid, T. H. A. ; Mahdy, Y. B.</creatorcontrib><description>Support Vector Machine (SVM) is a popular data classification method with many diverse applications. SVM has many parameters, which have significant influences on the performance of SVM classifier. In this paper, a Scatter Search approach is used to find near optimal values of the SVM parameters and its kernel parameters. The proposed method integrates a scatter search approach with support vector machine using three different kernel functions, shortly (3SVM). To evaluate the performance of the proposed method, 4 benchmark datasets are used. Experiments and comparisons prove that the 3SVM is a promising approach and has a competitive performance relative to some other published methods.</description><identifier>ISBN: 1467328235</identifier><identifier>ISBN: 9781467328234</identifier><identifier>EISBN: 1467328243</identifier><identifier>EISBN: 9781467328227</identifier><identifier>EISBN: 9781467328241</identifier><identifier>EISBN: 1467328227</identifier><identifier>DOI: 10.1109/ICCTA.2012.6523566</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2012 22nd International Conference on Computer Theory and Applications (ICCTA), 2012, p.181-186</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6523566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6523566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Afif, M. H.</creatorcontrib><creatorcontrib>Hedar, A-R</creatorcontrib><creatorcontrib>Hamid, T. H. A.</creatorcontrib><creatorcontrib>Mahdy, Y. B.</creatorcontrib><title>Parameter determination of support vector machine using scatter search approach</title><title>2012 22nd International Conference on Computer Theory and Applications (ICCTA)</title><addtitle>ICCTA</addtitle><description>Support Vector Machine (SVM) is a popular data classification method with many diverse applications. SVM has many parameters, which have significant influences on the performance of SVM classifier. In this paper, a Scatter Search approach is used to find near optimal values of the SVM parameters and its kernel parameters. The proposed method integrates a scatter search approach with support vector machine using three different kernel functions, shortly (3SVM). To evaluate the performance of the proposed method, 4 benchmark datasets are used. Experiments and comparisons prove that the 3SVM is a promising approach and has a competitive performance relative to some other published methods.</description><isbn>1467328235</isbn><isbn>9781467328234</isbn><isbn>1467328243</isbn><isbn>9781467328227</isbn><isbn>9781467328241</isbn><isbn>1467328227</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLAzEcxCMiqLVfQC_5ArvmsXkdy-KjUKiHei7Z5B8bcR8kqeC3d4sFLzMM_GYOg9A9JTWlxDyu23a3qhmhrJaCcSHlBbqljVScadbwy__AxTVa5vxJCJmbUml1g7ZvNtkeCiTsT9rHwZY4DngMOB-naUwFf4MrY8K9dYc4AD7mOHzg7Gw5tTLY5A7YTlMaZ-AOXQX7lWF59gV6f37ata_VZvuyblebKlIlStUw2zlDmJYBjPRCORPCHJQ0LHiudKNB0k5pw6VzCjx0M029Ya7jhDC-QA9_uxEA9lOKvU0_-_MB_Bc691BV</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Afif, M. H.</creator><creator>Hedar, A-R</creator><creator>Hamid, T. H. A.</creator><creator>Mahdy, Y. B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Parameter determination of support vector machine using scatter search approach</title><author>Afif, M. H. ; Hedar, A-R ; Hamid, T. H. A. ; Mahdy, Y. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-42abc90286fe96d57c9ff86f7692fd37848e61b78936cc7edeb9021d92cb30023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Afif, M. H.</creatorcontrib><creatorcontrib>Hedar, A-R</creatorcontrib><creatorcontrib>Hamid, T. H. A.</creatorcontrib><creatorcontrib>Mahdy, Y. B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Afif, M. H.</au><au>Hedar, A-R</au><au>Hamid, T. H. A.</au><au>Mahdy, Y. B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parameter determination of support vector machine using scatter search approach</atitle><btitle>2012 22nd International Conference on Computer Theory and Applications (ICCTA)</btitle><stitle>ICCTA</stitle><date>2012-10</date><risdate>2012</risdate><spage>181</spage><epage>186</epage><pages>181-186</pages><isbn>1467328235</isbn><isbn>9781467328234</isbn><eisbn>1467328243</eisbn><eisbn>9781467328227</eisbn><eisbn>9781467328241</eisbn><eisbn>1467328227</eisbn><abstract>Support Vector Machine (SVM) is a popular data classification method with many diverse applications. SVM has many parameters, which have significant influences on the performance of SVM classifier. In this paper, a Scatter Search approach is used to find near optimal values of the SVM parameters and its kernel parameters. The proposed method integrates a scatter search approach with support vector machine using three different kernel functions, shortly (3SVM). To evaluate the performance of the proposed method, 4 benchmark datasets are used. Experiments and comparisons prove that the 3SVM is a promising approach and has a competitive performance relative to some other published methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCTA.2012.6523566</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467328235
ispartof 2012 22nd International Conference on Computer Theory and Applications (ICCTA), 2012, p.181-186
issn
language eng
recordid cdi_ieee_primary_6523566
source IEEE Electronic Library (IEL) Conference Proceedings
title Parameter determination of support vector machine using scatter search approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parameter%20determination%20of%20support%20vector%20machine%20using%20scatter%20search%20approach&rft.btitle=2012%2022nd%20International%20Conference%20on%20Computer%20Theory%20and%20Applications%20(ICCTA)&rft.au=Afif,%20M.%20H.&rft.date=2012-10&rft.spage=181&rft.epage=186&rft.pages=181-186&rft.isbn=1467328235&rft.isbn_list=9781467328234&rft_id=info:doi/10.1109/ICCTA.2012.6523566&rft_dat=%3Cieee_6IE%3E6523566%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467328243&rft.eisbn_list=9781467328227&rft.eisbn_list=9781467328241&rft.eisbn_list=1467328227&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6523566&rfr_iscdi=true