A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures

A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2013-08, Vol.31 (15), p.2467-2476
Hauptverfasser: Prokopidis, K. P., Zografopoulos, D. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2476
container_issue 15
container_start_page 2467
container_title Journal of lightwave technology
container_volume 31
creator Prokopidis, K. P.
Zografopoulos, D. C.
description A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical point terms. The implementation of an efficient perfectly matched layer for the termination of such media is also discussed and demonstrated. The model's validity is directly compared with both analytical and numerical results that employ known dispersion schemes, for the case of two benchmark examples, transmission through a thin metal film and scattering from a metallic nanocylinder. Furthermore, the accuracy of the proposed method is also demonstrated in the study of the optical properties of Ag and Au metal-insulator-metal waveguides, filters, and resonators, which also involve dielectrics whose material dispersion is described by the Sellmeier model.
doi_str_mv 10.1109/JLT.2013.2265166
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6522119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6522119</ieee_id><sourcerecordid>27652535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e609c6a97b648ada05ecd7d1d244f9ab42fe3f0dc24c9f3c42796e96d12992903</originalsourceid><addsrcrecordid>eNo9kM9rwjAUx8PYYM7tPtgllx2ryUuaNkencz_omKCeS0xeWIa2ktTD_vtVFE8Pvr_gfQh55GzEOdPjz2o1AsbFCEDlXKkrMuB5XmYAXFyTASuEyMoC5C25S-mXMS5lWQxIPaHrJviAjs5nq9l48VXRpf3BHdIXk3q1beg0hi5Ys6WLNjRdor6NdGLtIZoO6bI7uICJtp4utibt2ibYXowH2x0ipnty48024cP5Dsl6_rqavmfV99vHdFJlFrToMlRMW2V0sVGyNM6wHK0rHHcgpddmI8Gj8MxZkFZ7YSUUWqFWjoPWoJkYEnbatbFNKaKv9zHsTPyrOauPgOoeUH0EVJ8B9ZXnU2VvUv-dj6axIV16UKgccpH3uadTLiDixe5N4FyLf7XLbfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures</title><source>IEEE Electronic Library (IEL)</source><creator>Prokopidis, K. P. ; Zografopoulos, D. C.</creator><creatorcontrib>Prokopidis, K. P. ; Zografopoulos, D. C.</creatorcontrib><description>A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical point terms. The implementation of an efficient perfectly matched layer for the termination of such media is also discussed and demonstrated. The model's validity is directly compared with both analytical and numerical results that employ known dispersion schemes, for the case of two benchmark examples, transmission through a thin metal film and scattering from a metallic nanocylinder. Furthermore, the accuracy of the proposed method is also demonstrated in the study of the optical properties of Ag and Au metal-insulator-metal waveguides, filters, and resonators, which also involve dielectrics whose material dispersion is described by the Sellmeier model.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2013.2265166</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Auxiliary differential equations ; Cauchy ; Circuit properties ; critical points ; Dispersion ; Electric, optical and optoelectronic circuits ; Electronics ; Equations ; Exact sciences and technology ; Finite difference methods ; finite-difference time-domain method ; Integrated optics. Optical fibers and wave guides ; material dispersion ; Mathematical model ; Media ; Optical and optoelectronic circuits ; perfectly matched layers ; plasmonic waveguides ; scattering cross-section ; Sellmeier ; Time-domain analysis</subject><ispartof>Journal of lightwave technology, 2013-08, Vol.31 (15), p.2467-2476</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e609c6a97b648ada05ecd7d1d244f9ab42fe3f0dc24c9f3c42796e96d12992903</citedby><cites>FETCH-LOGICAL-c293t-e609c6a97b648ada05ecd7d1d244f9ab42fe3f0dc24c9f3c42796e96d12992903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6522119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6522119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27652535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prokopidis, K. P.</creatorcontrib><creatorcontrib>Zografopoulos, D. C.</creatorcontrib><title>A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical point terms. The implementation of an efficient perfectly matched layer for the termination of such media is also discussed and demonstrated. The model's validity is directly compared with both analytical and numerical results that employ known dispersion schemes, for the case of two benchmark examples, transmission through a thin metal film and scattering from a metallic nanocylinder. Furthermore, the accuracy of the proposed method is also demonstrated in the study of the optical properties of Ag and Au metal-insulator-metal waveguides, filters, and resonators, which also involve dielectrics whose material dispersion is described by the Sellmeier model.</description><subject>Applied sciences</subject><subject>Auxiliary differential equations</subject><subject>Cauchy</subject><subject>Circuit properties</subject><subject>critical points</subject><subject>Dispersion</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>finite-difference time-domain method</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>material dispersion</subject><subject>Mathematical model</subject><subject>Media</subject><subject>Optical and optoelectronic circuits</subject><subject>perfectly matched layers</subject><subject>plasmonic waveguides</subject><subject>scattering cross-section</subject><subject>Sellmeier</subject><subject>Time-domain analysis</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9rwjAUx8PYYM7tPtgllx2ryUuaNkencz_omKCeS0xeWIa2ktTD_vtVFE8Pvr_gfQh55GzEOdPjz2o1AsbFCEDlXKkrMuB5XmYAXFyTASuEyMoC5C25S-mXMS5lWQxIPaHrJviAjs5nq9l48VXRpf3BHdIXk3q1beg0hi5Ys6WLNjRdor6NdGLtIZoO6bI7uICJtp4utibt2ibYXowH2x0ipnty48024cP5Dsl6_rqavmfV99vHdFJlFrToMlRMW2V0sVGyNM6wHK0rHHcgpddmI8Gj8MxZkFZ7YSUUWqFWjoPWoJkYEnbatbFNKaKv9zHsTPyrOauPgOoeUH0EVJ8B9ZXnU2VvUv-dj6axIV16UKgccpH3uadTLiDixe5N4FyLf7XLbfY</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Prokopidis, K. P.</creator><creator>Zografopoulos, D. C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130801</creationdate><title>A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures</title><author>Prokopidis, K. P. ; Zografopoulos, D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e609c6a97b648ada05ecd7d1d244f9ab42fe3f0dc24c9f3c42796e96d12992903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Auxiliary differential equations</topic><topic>Cauchy</topic><topic>Circuit properties</topic><topic>critical points</topic><topic>Dispersion</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>finite-difference time-domain method</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>material dispersion</topic><topic>Mathematical model</topic><topic>Media</topic><topic>Optical and optoelectronic circuits</topic><topic>perfectly matched layers</topic><topic>plasmonic waveguides</topic><topic>scattering cross-section</topic><topic>Sellmeier</topic><topic>Time-domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prokopidis, K. P.</creatorcontrib><creatorcontrib>Zografopoulos, D. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prokopidis, K. P.</au><au>Zografopoulos, D. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>31</volume><issue>15</issue><spage>2467</spage><epage>2476</epage><pages>2467-2476</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical point terms. The implementation of an efficient perfectly matched layer for the termination of such media is also discussed and demonstrated. The model's validity is directly compared with both analytical and numerical results that employ known dispersion schemes, for the case of two benchmark examples, transmission through a thin metal film and scattering from a metallic nanocylinder. Furthermore, the accuracy of the proposed method is also demonstrated in the study of the optical properties of Ag and Au metal-insulator-metal waveguides, filters, and resonators, which also involve dielectrics whose material dispersion is described by the Sellmeier model.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2013.2265166</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2013-08, Vol.31 (15), p.2467-2476
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_6522119
source IEEE Electronic Library (IEL)
subjects Applied sciences
Auxiliary differential equations
Cauchy
Circuit properties
critical points
Dispersion
Electric, optical and optoelectronic circuits
Electronics
Equations
Exact sciences and technology
Finite difference methods
finite-difference time-domain method
Integrated optics. Optical fibers and wave guides
material dispersion
Mathematical model
Media
Optical and optoelectronic circuits
perfectly matched layers
plasmonic waveguides
scattering cross-section
Sellmeier
Time-domain analysis
title A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20FDTD/PML%20Scheme%20Based%20on%20Critical%20Points%20for%20Accurate%20Studies%20of%20Plasmonic%20Structures&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Prokopidis,%20K.%20P.&rft.date=2013-08-01&rft.volume=31&rft.issue=15&rft.spage=2467&rft.epage=2476&rft.pages=2467-2476&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2013.2265166&rft_dat=%3Cpascalfrancis_RIE%3E27652535%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6522119&rfr_iscdi=true