A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures
A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2013-08, Vol.31 (15), p.2467-2476 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2476 |
---|---|
container_issue | 15 |
container_start_page | 2467 |
container_title | Journal of lightwave technology |
container_volume | 31 |
creator | Prokopidis, K. P. Zografopoulos, D. C. |
description | A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical point terms. The implementation of an efficient perfectly matched layer for the termination of such media is also discussed and demonstrated. The model's validity is directly compared with both analytical and numerical results that employ known dispersion schemes, for the case of two benchmark examples, transmission through a thin metal film and scattering from a metallic nanocylinder. Furthermore, the accuracy of the proposed method is also demonstrated in the study of the optical properties of Ag and Au metal-insulator-metal waveguides, filters, and resonators, which also involve dielectrics whose material dispersion is described by the Sellmeier model. |
doi_str_mv | 10.1109/JLT.2013.2265166 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6522119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6522119</ieee_id><sourcerecordid>27652535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e609c6a97b648ada05ecd7d1d244f9ab42fe3f0dc24c9f3c42796e96d12992903</originalsourceid><addsrcrecordid>eNo9kM9rwjAUx8PYYM7tPtgllx2ryUuaNkencz_omKCeS0xeWIa2ktTD_vtVFE8Pvr_gfQh55GzEOdPjz2o1AsbFCEDlXKkrMuB5XmYAXFyTASuEyMoC5C25S-mXMS5lWQxIPaHrJviAjs5nq9l48VXRpf3BHdIXk3q1beg0hi5Ys6WLNjRdor6NdGLtIZoO6bI7uICJtp4utibt2ibYXowH2x0ipnty48024cP5Dsl6_rqavmfV99vHdFJlFrToMlRMW2V0sVGyNM6wHK0rHHcgpddmI8Gj8MxZkFZ7YSUUWqFWjoPWoJkYEnbatbFNKaKv9zHsTPyrOauPgOoeUH0EVJ8B9ZXnU2VvUv-dj6axIV16UKgccpH3uadTLiDixe5N4FyLf7XLbfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures</title><source>IEEE Electronic Library (IEL)</source><creator>Prokopidis, K. P. ; Zografopoulos, D. C.</creator><creatorcontrib>Prokopidis, K. P. ; Zografopoulos, D. C.</creatorcontrib><description>A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical point terms. The implementation of an efficient perfectly matched layer for the termination of such media is also discussed and demonstrated. The model's validity is directly compared with both analytical and numerical results that employ known dispersion schemes, for the case of two benchmark examples, transmission through a thin metal film and scattering from a metallic nanocylinder. Furthermore, the accuracy of the proposed method is also demonstrated in the study of the optical properties of Ag and Au metal-insulator-metal waveguides, filters, and resonators, which also involve dielectrics whose material dispersion is described by the Sellmeier model.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2013.2265166</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Auxiliary differential equations ; Cauchy ; Circuit properties ; critical points ; Dispersion ; Electric, optical and optoelectronic circuits ; Electronics ; Equations ; Exact sciences and technology ; Finite difference methods ; finite-difference time-domain method ; Integrated optics. Optical fibers and wave guides ; material dispersion ; Mathematical model ; Media ; Optical and optoelectronic circuits ; perfectly matched layers ; plasmonic waveguides ; scattering cross-section ; Sellmeier ; Time-domain analysis</subject><ispartof>Journal of lightwave technology, 2013-08, Vol.31 (15), p.2467-2476</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e609c6a97b648ada05ecd7d1d244f9ab42fe3f0dc24c9f3c42796e96d12992903</citedby><cites>FETCH-LOGICAL-c293t-e609c6a97b648ada05ecd7d1d244f9ab42fe3f0dc24c9f3c42796e96d12992903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6522119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6522119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27652535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prokopidis, K. P.</creatorcontrib><creatorcontrib>Zografopoulos, D. C.</creatorcontrib><title>A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical point terms. The implementation of an efficient perfectly matched layer for the termination of such media is also discussed and demonstrated. The model's validity is directly compared with both analytical and numerical results that employ known dispersion schemes, for the case of two benchmark examples, transmission through a thin metal film and scattering from a metallic nanocylinder. Furthermore, the accuracy of the proposed method is also demonstrated in the study of the optical properties of Ag and Au metal-insulator-metal waveguides, filters, and resonators, which also involve dielectrics whose material dispersion is described by the Sellmeier model.</description><subject>Applied sciences</subject><subject>Auxiliary differential equations</subject><subject>Cauchy</subject><subject>Circuit properties</subject><subject>critical points</subject><subject>Dispersion</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>finite-difference time-domain method</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>material dispersion</subject><subject>Mathematical model</subject><subject>Media</subject><subject>Optical and optoelectronic circuits</subject><subject>perfectly matched layers</subject><subject>plasmonic waveguides</subject><subject>scattering cross-section</subject><subject>Sellmeier</subject><subject>Time-domain analysis</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9rwjAUx8PYYM7tPtgllx2ryUuaNkencz_omKCeS0xeWIa2ktTD_vtVFE8Pvr_gfQh55GzEOdPjz2o1AsbFCEDlXKkrMuB5XmYAXFyTASuEyMoC5C25S-mXMS5lWQxIPaHrJviAjs5nq9l48VXRpf3BHdIXk3q1beg0hi5Ys6WLNjRdor6NdGLtIZoO6bI7uICJtp4utibt2ibYXowH2x0ipnty48024cP5Dsl6_rqavmfV99vHdFJlFrToMlRMW2V0sVGyNM6wHK0rHHcgpddmI8Gj8MxZkFZ7YSUUWqFWjoPWoJkYEnbatbFNKaKv9zHsTPyrOauPgOoeUH0EVJ8B9ZXnU2VvUv-dj6axIV16UKgccpH3uadTLiDixe5N4FyLf7XLbfY</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Prokopidis, K. P.</creator><creator>Zografopoulos, D. C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130801</creationdate><title>A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures</title><author>Prokopidis, K. P. ; Zografopoulos, D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e609c6a97b648ada05ecd7d1d244f9ab42fe3f0dc24c9f3c42796e96d12992903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Auxiliary differential equations</topic><topic>Cauchy</topic><topic>Circuit properties</topic><topic>critical points</topic><topic>Dispersion</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>finite-difference time-domain method</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>material dispersion</topic><topic>Mathematical model</topic><topic>Media</topic><topic>Optical and optoelectronic circuits</topic><topic>perfectly matched layers</topic><topic>plasmonic waveguides</topic><topic>scattering cross-section</topic><topic>Sellmeier</topic><topic>Time-domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prokopidis, K. P.</creatorcontrib><creatorcontrib>Zografopoulos, D. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prokopidis, K. P.</au><au>Zografopoulos, D. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>31</volume><issue>15</issue><spage>2467</spage><epage>2476</epage><pages>2467-2476</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A generalized auxiliary differential equation (ADE) finite-difference time-domain (FDTD) dispersive scheme is introduced for the rigorous simulation of wave propagation in metallic structures at optical frequencies, where material dispersion is described via an arbitrary number of Drude and critical point terms. The implementation of an efficient perfectly matched layer for the termination of such media is also discussed and demonstrated. The model's validity is directly compared with both analytical and numerical results that employ known dispersion schemes, for the case of two benchmark examples, transmission through a thin metal film and scattering from a metallic nanocylinder. Furthermore, the accuracy of the proposed method is also demonstrated in the study of the optical properties of Ag and Au metal-insulator-metal waveguides, filters, and resonators, which also involve dielectrics whose material dispersion is described by the Sellmeier model.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2013.2265166</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2013-08, Vol.31 (15), p.2467-2476 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_6522119 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Auxiliary differential equations Cauchy Circuit properties critical points Dispersion Electric, optical and optoelectronic circuits Electronics Equations Exact sciences and technology Finite difference methods finite-difference time-domain method Integrated optics. Optical fibers and wave guides material dispersion Mathematical model Media Optical and optoelectronic circuits perfectly matched layers plasmonic waveguides scattering cross-section Sellmeier Time-domain analysis |
title | A Unified FDTD/PML Scheme Based on Critical Points for Accurate Studies of Plasmonic Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20FDTD/PML%20Scheme%20Based%20on%20Critical%20Points%20for%20Accurate%20Studies%20of%20Plasmonic%20Structures&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Prokopidis,%20K.%20P.&rft.date=2013-08-01&rft.volume=31&rft.issue=15&rft.spage=2467&rft.epage=2476&rft.pages=2467-2476&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2013.2265166&rft_dat=%3Cpascalfrancis_RIE%3E27652535%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6522119&rfr_iscdi=true |