Insertion/Deletion Detecting Codes and the Boundary Problem
Insertion/deletion detecting codes were introduced by Konstantinidis In this paper we define insertion/deletion detecting codes in a slightly different manner, and based on this definition, we introduce multiple deletion and multiple insertion detecting codes. It is shown that these codes, which are...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2013-09, Vol.59 (9), p.5935-5943 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5943 |
---|---|
container_issue | 9 |
container_start_page | 5935 |
container_title | IEEE transactions on information theory |
container_volume | 59 |
creator | Paluncic, Filip Abdel-Ghaffar, Khaled A. S. Ferreira, Hendrik C. |
description | Insertion/deletion detecting codes were introduced by Konstantinidis In this paper we define insertion/deletion detecting codes in a slightly different manner, and based on this definition, we introduce multiple deletion and multiple insertion detecting codes. It is shown that these codes, which are systematic, are optimal in the sense that there exists no other systematic multiple deletion (insertion) detecting codes with a better rate. One of the limitations of number-theoretic code constructions intended to correct insertion/deletion errors, e.g., the Levenshtein code, is that they require received codeword boundaries to be known in order to successfully decode. In literature, a number of schemes have been proposed to deal with this problem. We show how insertion/deletion detecting codes as presented in this paper can be used to improve and/or extend some of these schemes. |
doi_str_mv | 10.1109/TIT.2013.2264825 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6519294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6519294</ieee_id><sourcerecordid>3051472691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-3c168a120dbe0c4c892213ff00332c428f72c4ee466e77950cada396c771ef633</originalsourceid><addsrcrecordid>eNo9UE1Lw0AQXUTBWr0LXgLiMe3O7FcWT9r6USjooZ7DdjPRlDSpu-nBf29CS09vhnnvzeMxdgt8AsDtdLVYTZCDmCBqmaE6YyNQyqRWK3nORpxDllops0t2FeOmX6UCHLHHRRMpdFXbTOdU0zAkc-rId1XznczagmLimiLpfih5bvdN4cJf8hnadU3ba3ZRujrSzRHH7Ov1ZTV7T5cfb4vZ0zL1AqFLhQedOUBerIl76TOLCKIsORcCvcSsND0QSa3JGKu4d4UTVntjgEotxJjdH3x3of3dU-zyTbsPTf8yB4k6U6gBexY_sHxoYwxU5rtQbfu4OfB8qCjvK8qHivJjRb3k4Wjsond1GVzjq3jSodHGCD4EuDvwKiI6nbUCi1aKfyzobS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426852612</pqid></control><display><type>article</type><title>Insertion/Deletion Detecting Codes and the Boundary Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Paluncic, Filip ; Abdel-Ghaffar, Khaled A. S. ; Ferreira, Hendrik C.</creator><creatorcontrib>Paluncic, Filip ; Abdel-Ghaffar, Khaled A. S. ; Ferreira, Hendrik C.</creatorcontrib><description>Insertion/deletion detecting codes were introduced by Konstantinidis In this paper we define insertion/deletion detecting codes in a slightly different manner, and based on this definition, we introduce multiple deletion and multiple insertion detecting codes. It is shown that these codes, which are systematic, are optimal in the sense that there exists no other systematic multiple deletion (insertion) detecting codes with a better rate. One of the limitations of number-theoretic code constructions intended to correct insertion/deletion errors, e.g., the Levenshtein code, is that they require received codeword boundaries to be known in order to successfully decode. In literature, a number of schemes have been proposed to deal with this problem. We show how insertion/deletion detecting codes as presented in this paper can be used to improve and/or extend some of these schemes.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2013.2264825</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Codes ; Codeword boundary ; Coding theory ; Decoding ; Delays ; Exact sciences and technology ; Indexes ; Information theory ; Information, signal and communications theory ; insertion/deletion detection ; Number theory ; Receivers ; Synchronization ; systematic codes ; Systematics ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on information theory, 2013-09, Vol.59 (9), p.5935-5943</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-3c168a120dbe0c4c892213ff00332c428f72c4ee466e77950cada396c771ef633</citedby><cites>FETCH-LOGICAL-c321t-3c168a120dbe0c4c892213ff00332c428f72c4ee466e77950cada396c771ef633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6519294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6519294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27677303$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Paluncic, Filip</creatorcontrib><creatorcontrib>Abdel-Ghaffar, Khaled A. S.</creatorcontrib><creatorcontrib>Ferreira, Hendrik C.</creatorcontrib><title>Insertion/Deletion Detecting Codes and the Boundary Problem</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Insertion/deletion detecting codes were introduced by Konstantinidis In this paper we define insertion/deletion detecting codes in a slightly different manner, and based on this definition, we introduce multiple deletion and multiple insertion detecting codes. It is shown that these codes, which are systematic, are optimal in the sense that there exists no other systematic multiple deletion (insertion) detecting codes with a better rate. One of the limitations of number-theoretic code constructions intended to correct insertion/deletion errors, e.g., the Levenshtein code, is that they require received codeword boundaries to be known in order to successfully decode. In literature, a number of schemes have been proposed to deal with this problem. We show how insertion/deletion detecting codes as presented in this paper can be used to improve and/or extend some of these schemes.</description><subject>Applied sciences</subject><subject>Codes</subject><subject>Codeword boundary</subject><subject>Coding theory</subject><subject>Decoding</subject><subject>Delays</subject><subject>Exact sciences and technology</subject><subject>Indexes</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>insertion/deletion detection</subject><subject>Number theory</subject><subject>Receivers</subject><subject>Synchronization</subject><subject>systematic codes</subject><subject>Systematics</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1Lw0AQXUTBWr0LXgLiMe3O7FcWT9r6USjooZ7DdjPRlDSpu-nBf29CS09vhnnvzeMxdgt8AsDtdLVYTZCDmCBqmaE6YyNQyqRWK3nORpxDllops0t2FeOmX6UCHLHHRRMpdFXbTOdU0zAkc-rId1XznczagmLimiLpfih5bvdN4cJf8hnadU3ba3ZRujrSzRHH7Ov1ZTV7T5cfb4vZ0zL1AqFLhQedOUBerIl76TOLCKIsORcCvcSsND0QSa3JGKu4d4UTVntjgEotxJjdH3x3of3dU-zyTbsPTf8yB4k6U6gBexY_sHxoYwxU5rtQbfu4OfB8qCjvK8qHivJjRb3k4Wjsond1GVzjq3jSodHGCD4EuDvwKiI6nbUCi1aKfyzobS8</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Paluncic, Filip</creator><creator>Abdel-Ghaffar, Khaled A. S.</creator><creator>Ferreira, Hendrik C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>Insertion/Deletion Detecting Codes and the Boundary Problem</title><author>Paluncic, Filip ; Abdel-Ghaffar, Khaled A. S. ; Ferreira, Hendrik C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-3c168a120dbe0c4c892213ff00332c428f72c4ee466e77950cada396c771ef633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Codes</topic><topic>Codeword boundary</topic><topic>Coding theory</topic><topic>Decoding</topic><topic>Delays</topic><topic>Exact sciences and technology</topic><topic>Indexes</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>insertion/deletion detection</topic><topic>Number theory</topic><topic>Receivers</topic><topic>Synchronization</topic><topic>systematic codes</topic><topic>Systematics</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paluncic, Filip</creatorcontrib><creatorcontrib>Abdel-Ghaffar, Khaled A. S.</creatorcontrib><creatorcontrib>Ferreira, Hendrik C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paluncic, Filip</au><au>Abdel-Ghaffar, Khaled A. S.</au><au>Ferreira, Hendrik C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insertion/Deletion Detecting Codes and the Boundary Problem</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>59</volume><issue>9</issue><spage>5935</spage><epage>5943</epage><pages>5935-5943</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Insertion/deletion detecting codes were introduced by Konstantinidis In this paper we define insertion/deletion detecting codes in a slightly different manner, and based on this definition, we introduce multiple deletion and multiple insertion detecting codes. It is shown that these codes, which are systematic, are optimal in the sense that there exists no other systematic multiple deletion (insertion) detecting codes with a better rate. One of the limitations of number-theoretic code constructions intended to correct insertion/deletion errors, e.g., the Levenshtein code, is that they require received codeword boundaries to be known in order to successfully decode. In literature, a number of schemes have been proposed to deal with this problem. We show how insertion/deletion detecting codes as presented in this paper can be used to improve and/or extend some of these schemes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2013.2264825</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2013-09, Vol.59 (9), p.5935-5943 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_6519294 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Codes Codeword boundary Coding theory Decoding Delays Exact sciences and technology Indexes Information theory Information, signal and communications theory insertion/deletion detection Number theory Receivers Synchronization systematic codes Systematics Telecommunications and information theory Vectors |
title | Insertion/Deletion Detecting Codes and the Boundary Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insertion/Deletion%20Detecting%20Codes%20and%20the%20Boundary%20Problem&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Paluncic,%20Filip&rft.date=2013-09-01&rft.volume=59&rft.issue=9&rft.spage=5935&rft.epage=5943&rft.pages=5935-5943&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2013.2264825&rft_dat=%3Cproquest_RIE%3E3051472691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426852612&rft_id=info:pmid/&rft_ieee_id=6519294&rfr_iscdi=true |