Insertion/Deletion Detecting Codes and the Boundary Problem

Insertion/deletion detecting codes were introduced by Konstantinidis In this paper we define insertion/deletion detecting codes in a slightly different manner, and based on this definition, we introduce multiple deletion and multiple insertion detecting codes. It is shown that these codes, which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2013-09, Vol.59 (9), p.5935-5943
Hauptverfasser: Paluncic, Filip, Abdel-Ghaffar, Khaled A. S., Ferreira, Hendrik C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5943
container_issue 9
container_start_page 5935
container_title IEEE transactions on information theory
container_volume 59
creator Paluncic, Filip
Abdel-Ghaffar, Khaled A. S.
Ferreira, Hendrik C.
description Insertion/deletion detecting codes were introduced by Konstantinidis In this paper we define insertion/deletion detecting codes in a slightly different manner, and based on this definition, we introduce multiple deletion and multiple insertion detecting codes. It is shown that these codes, which are systematic, are optimal in the sense that there exists no other systematic multiple deletion (insertion) detecting codes with a better rate. One of the limitations of number-theoretic code constructions intended to correct insertion/deletion errors, e.g., the Levenshtein code, is that they require received codeword boundaries to be known in order to successfully decode. In literature, a number of schemes have been proposed to deal with this problem. We show how insertion/deletion detecting codes as presented in this paper can be used to improve and/or extend some of these schemes.
doi_str_mv 10.1109/TIT.2013.2264825
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6519294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6519294</ieee_id><sourcerecordid>3051472691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-3c168a120dbe0c4c892213ff00332c428f72c4ee466e77950cada396c771ef633</originalsourceid><addsrcrecordid>eNo9UE1Lw0AQXUTBWr0LXgLiMe3O7FcWT9r6USjooZ7DdjPRlDSpu-nBf29CS09vhnnvzeMxdgt8AsDtdLVYTZCDmCBqmaE6YyNQyqRWK3nORpxDllops0t2FeOmX6UCHLHHRRMpdFXbTOdU0zAkc-rId1XznczagmLimiLpfih5bvdN4cJf8hnadU3ba3ZRujrSzRHH7Ov1ZTV7T5cfb4vZ0zL1AqFLhQedOUBerIl76TOLCKIsORcCvcSsND0QSa3JGKu4d4UTVntjgEotxJjdH3x3of3dU-zyTbsPTf8yB4k6U6gBexY_sHxoYwxU5rtQbfu4OfB8qCjvK8qHivJjRb3k4Wjsond1GVzjq3jSodHGCD4EuDvwKiI6nbUCi1aKfyzobS8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426852612</pqid></control><display><type>article</type><title>Insertion/Deletion Detecting Codes and the Boundary Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Paluncic, Filip ; Abdel-Ghaffar, Khaled A. S. ; Ferreira, Hendrik C.</creator><creatorcontrib>Paluncic, Filip ; Abdel-Ghaffar, Khaled A. S. ; Ferreira, Hendrik C.</creatorcontrib><description>Insertion/deletion detecting codes were introduced by Konstantinidis In this paper we define insertion/deletion detecting codes in a slightly different manner, and based on this definition, we introduce multiple deletion and multiple insertion detecting codes. It is shown that these codes, which are systematic, are optimal in the sense that there exists no other systematic multiple deletion (insertion) detecting codes with a better rate. One of the limitations of number-theoretic code constructions intended to correct insertion/deletion errors, e.g., the Levenshtein code, is that they require received codeword boundaries to be known in order to successfully decode. In literature, a number of schemes have been proposed to deal with this problem. We show how insertion/deletion detecting codes as presented in this paper can be used to improve and/or extend some of these schemes.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2013.2264825</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Codes ; Codeword boundary ; Coding theory ; Decoding ; Delays ; Exact sciences and technology ; Indexes ; Information theory ; Information, signal and communications theory ; insertion/deletion detection ; Number theory ; Receivers ; Synchronization ; systematic codes ; Systematics ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on information theory, 2013-09, Vol.59 (9), p.5935-5943</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-3c168a120dbe0c4c892213ff00332c428f72c4ee466e77950cada396c771ef633</citedby><cites>FETCH-LOGICAL-c321t-3c168a120dbe0c4c892213ff00332c428f72c4ee466e77950cada396c771ef633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6519294$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6519294$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27677303$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Paluncic, Filip</creatorcontrib><creatorcontrib>Abdel-Ghaffar, Khaled A. S.</creatorcontrib><creatorcontrib>Ferreira, Hendrik C.</creatorcontrib><title>Insertion/Deletion Detecting Codes and the Boundary Problem</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Insertion/deletion detecting codes were introduced by Konstantinidis In this paper we define insertion/deletion detecting codes in a slightly different manner, and based on this definition, we introduce multiple deletion and multiple insertion detecting codes. It is shown that these codes, which are systematic, are optimal in the sense that there exists no other systematic multiple deletion (insertion) detecting codes with a better rate. One of the limitations of number-theoretic code constructions intended to correct insertion/deletion errors, e.g., the Levenshtein code, is that they require received codeword boundaries to be known in order to successfully decode. In literature, a number of schemes have been proposed to deal with this problem. We show how insertion/deletion detecting codes as presented in this paper can be used to improve and/or extend some of these schemes.</description><subject>Applied sciences</subject><subject>Codes</subject><subject>Codeword boundary</subject><subject>Coding theory</subject><subject>Decoding</subject><subject>Delays</subject><subject>Exact sciences and technology</subject><subject>Indexes</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>insertion/deletion detection</subject><subject>Number theory</subject><subject>Receivers</subject><subject>Synchronization</subject><subject>systematic codes</subject><subject>Systematics</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1Lw0AQXUTBWr0LXgLiMe3O7FcWT9r6USjooZ7DdjPRlDSpu-nBf29CS09vhnnvzeMxdgt8AsDtdLVYTZCDmCBqmaE6YyNQyqRWK3nORpxDllops0t2FeOmX6UCHLHHRRMpdFXbTOdU0zAkc-rId1XznczagmLimiLpfih5bvdN4cJf8hnadU3ba3ZRujrSzRHH7Ov1ZTV7T5cfb4vZ0zL1AqFLhQedOUBerIl76TOLCKIsORcCvcSsND0QSa3JGKu4d4UTVntjgEotxJjdH3x3of3dU-zyTbsPTf8yB4k6U6gBexY_sHxoYwxU5rtQbfu4OfB8qCjvK8qHivJjRb3k4Wjsond1GVzjq3jSodHGCD4EuDvwKiI6nbUCi1aKfyzobS8</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Paluncic, Filip</creator><creator>Abdel-Ghaffar, Khaled A. S.</creator><creator>Ferreira, Hendrik C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>Insertion/Deletion Detecting Codes and the Boundary Problem</title><author>Paluncic, Filip ; Abdel-Ghaffar, Khaled A. S. ; Ferreira, Hendrik C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-3c168a120dbe0c4c892213ff00332c428f72c4ee466e77950cada396c771ef633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Codes</topic><topic>Codeword boundary</topic><topic>Coding theory</topic><topic>Decoding</topic><topic>Delays</topic><topic>Exact sciences and technology</topic><topic>Indexes</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>insertion/deletion detection</topic><topic>Number theory</topic><topic>Receivers</topic><topic>Synchronization</topic><topic>systematic codes</topic><topic>Systematics</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paluncic, Filip</creatorcontrib><creatorcontrib>Abdel-Ghaffar, Khaled A. S.</creatorcontrib><creatorcontrib>Ferreira, Hendrik C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paluncic, Filip</au><au>Abdel-Ghaffar, Khaled A. S.</au><au>Ferreira, Hendrik C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insertion/Deletion Detecting Codes and the Boundary Problem</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>59</volume><issue>9</issue><spage>5935</spage><epage>5943</epage><pages>5935-5943</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Insertion/deletion detecting codes were introduced by Konstantinidis In this paper we define insertion/deletion detecting codes in a slightly different manner, and based on this definition, we introduce multiple deletion and multiple insertion detecting codes. It is shown that these codes, which are systematic, are optimal in the sense that there exists no other systematic multiple deletion (insertion) detecting codes with a better rate. One of the limitations of number-theoretic code constructions intended to correct insertion/deletion errors, e.g., the Levenshtein code, is that they require received codeword boundaries to be known in order to successfully decode. In literature, a number of schemes have been proposed to deal with this problem. We show how insertion/deletion detecting codes as presented in this paper can be used to improve and/or extend some of these schemes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2013.2264825</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2013-09, Vol.59 (9), p.5935-5943
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_6519294
source IEEE Electronic Library (IEL)
subjects Applied sciences
Codes
Codeword boundary
Coding theory
Decoding
Delays
Exact sciences and technology
Indexes
Information theory
Information, signal and communications theory
insertion/deletion detection
Number theory
Receivers
Synchronization
systematic codes
Systematics
Telecommunications and information theory
Vectors
title Insertion/Deletion Detecting Codes and the Boundary Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insertion/Deletion%20Detecting%20Codes%20and%20the%20Boundary%20Problem&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Paluncic,%20Filip&rft.date=2013-09-01&rft.volume=59&rft.issue=9&rft.spage=5935&rft.epage=5943&rft.pages=5935-5943&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2013.2264825&rft_dat=%3Cproquest_RIE%3E3051472691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426852612&rft_id=info:pmid/&rft_ieee_id=6519294&rfr_iscdi=true