Evaluation of Steering Algorithm Optimality for Single-Gimbal Control Moment Gyroscopes
Analytic optimization methods typically used to derive optimal steering algorithms for single-gimbal control moment gyros do not consider the structure of the Jacobian matrix mapping the gimbal rates onto the desired torque within their cost function. Many of the steering algorithms resulting from t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2014-05, Vol.22 (3), p.1130-1134 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1134 |
---|---|
container_issue | 3 |
container_start_page | 1130 |
container_title | IEEE transactions on control systems technology |
container_volume | 22 |
creator | Leve, Frederick A. |
description | Analytic optimization methods typically used to derive optimal steering algorithms for single-gimbal control moment gyros do not consider the structure of the Jacobian matrix mapping the gimbal rates onto the desired torque within their cost function. Many of the steering algorithms resulting from these optimization methods systematically take first and second derivatives, forming the Jacobian and Hessian matrices to obtain a solution. However, the optimality is usually a local result and cannot be mapped back to its resulting performance. It is shown that the majority of steering algorithms are optimal with respect to one specific cost function previously published and that the design of the weighting matrices within the cost is what distinguishes steering algorithms. The author analytically shows how the blended inverse, Moore-Penrose pseudoinverse, generalized inverse steering law, singularity robust inverse, generalized singularity robust inverse, singular direction avoidance, local-gradient methods, and the hybrid steering logic are derived from the same optimizations but their sense of optimality is lost because the structure of singularities is not considered in the optimization process. In addition, the author also points out that the design of the quadratic costs weighting matrix used for optimization and desired gimbal rate is of the highest importance in differentiation between steering law performance. |
doi_str_mv | 10.1109/TCST.2013.2259829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6517875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6517875</ieee_id><sourcerecordid>3377137101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a5e1c4489feb4a37519ce27f3514bf34b63bf61d141297497e8c823df4214fef3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhhdR8PMHiJeAFy9bM_na3WMptQoVD614DLvbSV3JbmqSCv33prR48DQD88ww75Nlt0BHALR6XE4WyxGjwEeMyapk1Ul2AVKWOS2VPE09VTxXkqvz7DKEL0pBSFZcZB_Tn9pu69i5gThDFhHRd8OajO3a-S5-9uRtE7u-tl3cEeM8WaSpxXzW9U1tycQN0TtLXl2PQySznXehdRsM19mZqW3Am2O9yt6fpsvJcz5_m71MxvO85UzFvJYIrRBlZbARNS8kVC2ywnAJojFcNIo3RsEKBLCqEFWBZVsyvjKCgTBo-FX2cLi78e57iyHqvgstWlsP6LZBg0pSKOeCJfT-H_rltn5I32mQQpYVS1yi4EC1KUrwaPTGp_x-p4HqvWq9V633qvVRddq5O-x0iPjHKwlFWUj-C8g8ego</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545892033</pqid></control><display><type>article</type><title>Evaluation of Steering Algorithm Optimality for Single-Gimbal Control Moment Gyroscopes</title><source>IEEE Electronic Library (IEL)</source><creator>Leve, Frederick A.</creator><creatorcontrib>Leve, Frederick A.</creatorcontrib><description>Analytic optimization methods typically used to derive optimal steering algorithms for single-gimbal control moment gyros do not consider the structure of the Jacobian matrix mapping the gimbal rates onto the desired torque within their cost function. Many of the steering algorithms resulting from these optimization methods systematically take first and second derivatives, forming the Jacobian and Hessian matrices to obtain a solution. However, the optimality is usually a local result and cannot be mapped back to its resulting performance. It is shown that the majority of steering algorithms are optimal with respect to one specific cost function previously published and that the design of the weighting matrices within the cost is what distinguishes steering algorithms. The author analytically shows how the blended inverse, Moore-Penrose pseudoinverse, generalized inverse steering law, singularity robust inverse, generalized singularity robust inverse, singular direction avoidance, local-gradient methods, and the hybrid steering logic are derived from the same optimizations but their sense of optimality is lost because the structure of singularities is not considered in the optimization process. In addition, the author also points out that the design of the quadratic costs weighting matrix used for optimization and desired gimbal rate is of the highest importance in differentiation between steering law performance.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2013.2259829</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Attitude control ; control moment gyro ; Cost function ; Inverse ; Jacobian matrices ; Law ; Mathematical analysis ; optimality ; Optimization ; Periodic structures ; pseudoinverse ; Singular value decomposition ; Singularities ; singularity ; Space vehicles ; Steering ; Torque</subject><ispartof>IEEE transactions on control systems technology, 2014-05, Vol.22 (3), p.1130-1134</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-a5e1c4489feb4a37519ce27f3514bf34b63bf61d141297497e8c823df4214fef3</citedby><cites>FETCH-LOGICAL-c326t-a5e1c4489feb4a37519ce27f3514bf34b63bf61d141297497e8c823df4214fef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6517875$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6517875$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leve, Frederick A.</creatorcontrib><title>Evaluation of Steering Algorithm Optimality for Single-Gimbal Control Moment Gyroscopes</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Analytic optimization methods typically used to derive optimal steering algorithms for single-gimbal control moment gyros do not consider the structure of the Jacobian matrix mapping the gimbal rates onto the desired torque within their cost function. Many of the steering algorithms resulting from these optimization methods systematically take first and second derivatives, forming the Jacobian and Hessian matrices to obtain a solution. However, the optimality is usually a local result and cannot be mapped back to its resulting performance. It is shown that the majority of steering algorithms are optimal with respect to one specific cost function previously published and that the design of the weighting matrices within the cost is what distinguishes steering algorithms. The author analytically shows how the blended inverse, Moore-Penrose pseudoinverse, generalized inverse steering law, singularity robust inverse, generalized singularity robust inverse, singular direction avoidance, local-gradient methods, and the hybrid steering logic are derived from the same optimizations but their sense of optimality is lost because the structure of singularities is not considered in the optimization process. In addition, the author also points out that the design of the quadratic costs weighting matrix used for optimization and desired gimbal rate is of the highest importance in differentiation between steering law performance.</description><subject>Algorithms</subject><subject>Attitude control</subject><subject>control moment gyro</subject><subject>Cost function</subject><subject>Inverse</subject><subject>Jacobian matrices</subject><subject>Law</subject><subject>Mathematical analysis</subject><subject>optimality</subject><subject>Optimization</subject><subject>Periodic structures</subject><subject>pseudoinverse</subject><subject>Singular value decomposition</subject><subject>Singularities</subject><subject>singularity</subject><subject>Space vehicles</subject><subject>Steering</subject><subject>Torque</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhhdR8PMHiJeAFy9bM_na3WMptQoVD614DLvbSV3JbmqSCv33prR48DQD88ww75Nlt0BHALR6XE4WyxGjwEeMyapk1Ul2AVKWOS2VPE09VTxXkqvz7DKEL0pBSFZcZB_Tn9pu69i5gThDFhHRd8OajO3a-S5-9uRtE7u-tl3cEeM8WaSpxXzW9U1tycQN0TtLXl2PQySznXehdRsM19mZqW3Am2O9yt6fpsvJcz5_m71MxvO85UzFvJYIrRBlZbARNS8kVC2ywnAJojFcNIo3RsEKBLCqEFWBZVsyvjKCgTBo-FX2cLi78e57iyHqvgstWlsP6LZBg0pSKOeCJfT-H_rltn5I32mQQpYVS1yi4EC1KUrwaPTGp_x-p4HqvWq9V633qvVRddq5O-x0iPjHKwlFWUj-C8g8ego</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Leve, Frederick A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20140501</creationdate><title>Evaluation of Steering Algorithm Optimality for Single-Gimbal Control Moment Gyroscopes</title><author>Leve, Frederick A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a5e1c4489feb4a37519ce27f3514bf34b63bf61d141297497e8c823df4214fef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Attitude control</topic><topic>control moment gyro</topic><topic>Cost function</topic><topic>Inverse</topic><topic>Jacobian matrices</topic><topic>Law</topic><topic>Mathematical analysis</topic><topic>optimality</topic><topic>Optimization</topic><topic>Periodic structures</topic><topic>pseudoinverse</topic><topic>Singular value decomposition</topic><topic>Singularities</topic><topic>singularity</topic><topic>Space vehicles</topic><topic>Steering</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leve, Frederick A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leve, Frederick A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Steering Algorithm Optimality for Single-Gimbal Control Moment Gyroscopes</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>22</volume><issue>3</issue><spage>1130</spage><epage>1134</epage><pages>1130-1134</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Analytic optimization methods typically used to derive optimal steering algorithms for single-gimbal control moment gyros do not consider the structure of the Jacobian matrix mapping the gimbal rates onto the desired torque within their cost function. Many of the steering algorithms resulting from these optimization methods systematically take first and second derivatives, forming the Jacobian and Hessian matrices to obtain a solution. However, the optimality is usually a local result and cannot be mapped back to its resulting performance. It is shown that the majority of steering algorithms are optimal with respect to one specific cost function previously published and that the design of the weighting matrices within the cost is what distinguishes steering algorithms. The author analytically shows how the blended inverse, Moore-Penrose pseudoinverse, generalized inverse steering law, singularity robust inverse, generalized singularity robust inverse, singular direction avoidance, local-gradient methods, and the hybrid steering logic are derived from the same optimizations but their sense of optimality is lost because the structure of singularities is not considered in the optimization process. In addition, the author also points out that the design of the quadratic costs weighting matrix used for optimization and desired gimbal rate is of the highest importance in differentiation between steering law performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2013.2259829</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2014-05, Vol.22 (3), p.1130-1134 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_6517875 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Attitude control control moment gyro Cost function Inverse Jacobian matrices Law Mathematical analysis optimality Optimization Periodic structures pseudoinverse Singular value decomposition Singularities singularity Space vehicles Steering Torque |
title | Evaluation of Steering Algorithm Optimality for Single-Gimbal Control Moment Gyroscopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Steering%20Algorithm%20Optimality%20for%20Single-Gimbal%20Control%20Moment%20Gyroscopes&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Leve,%20Frederick%20A.&rft.date=2014-05-01&rft.volume=22&rft.issue=3&rft.spage=1130&rft.epage=1134&rft.pages=1130-1134&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2013.2259829&rft_dat=%3Cproquest_RIE%3E3377137101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545892033&rft_id=info:pmid/&rft_ieee_id=6517875&rfr_iscdi=true |