An Efficient Line-Search Algorithm for Unbiased Recursive Least-Squares Filtering With Noisy Inputs

This letter proposes a new algorithm for efficiently finding an unbiased RLS estimate of FIR models with noisy inputs. The unbiased estimate is obtained without knowing any a priori information via a new cost. Furthermore, to reduce computational complexity, the estimate is updated along the current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2013-07, Vol.20 (7), p.693-696
Hauptverfasser: ByungHoon Kang, PooGyeon Park
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 696
container_issue 7
container_start_page 693
container_title IEEE signal processing letters
container_volume 20
creator ByungHoon Kang
PooGyeon Park
description This letter proposes a new algorithm for efficiently finding an unbiased RLS estimate of FIR models with noisy inputs. The unbiased estimate is obtained without knowing any a priori information via a new cost. Furthermore, to reduce computational complexity, the estimate is updated along the current input-vector direction and the corresponding gain is efficiently computed. In addition, to increase the convergence rate, the algorithm is extended to update the estimate along not only current but also past input-vector directions. Simulation results show that the proposed algorithm exhibits a fast convergence rate and an enhanced tracking performance with noisy correlated inputs.
doi_str_mv 10.1109/LSP.2013.2263134
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6516006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6516006</ieee_id><sourcerecordid>10_1109_LSP_2013_2263134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-4a92e276ffcc3734520fea11735a6b13ca41dc60971dcc7c7efad6ad5c5de3293</originalsourceid><addsrcrecordid>eNo9kMFKAzEURYMoWKt7wU1-IPUlmSQzy1KqFgYVa3E5pJmXNtLO1GQq9O-d0uLqvsU9j8sh5J7DiHMoHsv5-0gAlyMhtOQyuyADrlTOhNT8sr_BACsKyK_JTUrfAJDzXA2IGzd06n1wAZuOlqFBNkcb3ZqON6s2hm69pb6NdNEsg01Y0w90-5jCL9ISberY_GdvIyb6FDYdxtCs6FcP0dc2pAOdNbt9l27JlbebhHfnHJLF0_Rz8sLKt-fZZFwy10_uWGYLgcJo752TRmZKgEfLuZHK6iWXzma8dhoK04czzqC3tba1cqpGKQo5JHD662KbUkRf7WLY2nioOFRHSVUvqTpKqs6SeuThhARE_K9rxTWAln-PAGRb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Efficient Line-Search Algorithm for Unbiased Recursive Least-Squares Filtering With Noisy Inputs</title><source>IEEE Electronic Library (IEL)</source><creator>ByungHoon Kang ; PooGyeon Park</creator><creatorcontrib>ByungHoon Kang ; PooGyeon Park</creatorcontrib><description>This letter proposes a new algorithm for efficiently finding an unbiased RLS estimate of FIR models with noisy inputs. The unbiased estimate is obtained without knowing any a priori information via a new cost. Furthermore, to reduce computational complexity, the estimate is updated along the current input-vector direction and the corresponding gain is efficiently computed. In addition, to increase the convergence rate, the algorithm is extended to update the estimate along not only current but also past input-vector directions. Simulation results show that the proposed algorithm exhibits a fast convergence rate and an enhanced tracking performance with noisy correlated inputs.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2013.2263134</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Bias-compensated LS ; Computational complexity ; Convergence ; Finite impulse response filters ; Noise measurement ; noisy FIR model ; Signal processing algorithms ; total least-squares ; Vectors</subject><ispartof>IEEE signal processing letters, 2013-07, Vol.20 (7), p.693-696</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-4a92e276ffcc3734520fea11735a6b13ca41dc60971dcc7c7efad6ad5c5de3293</citedby><cites>FETCH-LOGICAL-c263t-4a92e276ffcc3734520fea11735a6b13ca41dc60971dcc7c7efad6ad5c5de3293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6516006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6516006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>ByungHoon Kang</creatorcontrib><creatorcontrib>PooGyeon Park</creatorcontrib><title>An Efficient Line-Search Algorithm for Unbiased Recursive Least-Squares Filtering With Noisy Inputs</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter proposes a new algorithm for efficiently finding an unbiased RLS estimate of FIR models with noisy inputs. The unbiased estimate is obtained without knowing any a priori information via a new cost. Furthermore, to reduce computational complexity, the estimate is updated along the current input-vector direction and the corresponding gain is efficiently computed. In addition, to increase the convergence rate, the algorithm is extended to update the estimate along not only current but also past input-vector directions. Simulation results show that the proposed algorithm exhibits a fast convergence rate and an enhanced tracking performance with noisy correlated inputs.</description><subject>Approximation algorithms</subject><subject>Bias-compensated LS</subject><subject>Computational complexity</subject><subject>Convergence</subject><subject>Finite impulse response filters</subject><subject>Noise measurement</subject><subject>noisy FIR model</subject><subject>Signal processing algorithms</subject><subject>total least-squares</subject><subject>Vectors</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEURYMoWKt7wU1-IPUlmSQzy1KqFgYVa3E5pJmXNtLO1GQq9O-d0uLqvsU9j8sh5J7DiHMoHsv5-0gAlyMhtOQyuyADrlTOhNT8sr_BACsKyK_JTUrfAJDzXA2IGzd06n1wAZuOlqFBNkcb3ZqON6s2hm69pb6NdNEsg01Y0w90-5jCL9ISberY_GdvIyb6FDYdxtCs6FcP0dc2pAOdNbt9l27JlbebhHfnHJLF0_Rz8sLKt-fZZFwy10_uWGYLgcJo752TRmZKgEfLuZHK6iWXzma8dhoK04czzqC3tba1cqpGKQo5JHD662KbUkRf7WLY2nioOFRHSVUvqTpKqs6SeuThhARE_K9rxTWAln-PAGRb</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>ByungHoon Kang</creator><creator>PooGyeon Park</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130701</creationdate><title>An Efficient Line-Search Algorithm for Unbiased Recursive Least-Squares Filtering With Noisy Inputs</title><author>ByungHoon Kang ; PooGyeon Park</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-4a92e276ffcc3734520fea11735a6b13ca41dc60971dcc7c7efad6ad5c5de3293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation algorithms</topic><topic>Bias-compensated LS</topic><topic>Computational complexity</topic><topic>Convergence</topic><topic>Finite impulse response filters</topic><topic>Noise measurement</topic><topic>noisy FIR model</topic><topic>Signal processing algorithms</topic><topic>total least-squares</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ByungHoon Kang</creatorcontrib><creatorcontrib>PooGyeon Park</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ByungHoon Kang</au><au>PooGyeon Park</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Line-Search Algorithm for Unbiased Recursive Least-Squares Filtering With Noisy Inputs</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>20</volume><issue>7</issue><spage>693</spage><epage>696</epage><pages>693-696</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter proposes a new algorithm for efficiently finding an unbiased RLS estimate of FIR models with noisy inputs. The unbiased estimate is obtained without knowing any a priori information via a new cost. Furthermore, to reduce computational complexity, the estimate is updated along the current input-vector direction and the corresponding gain is efficiently computed. In addition, to increase the convergence rate, the algorithm is extended to update the estimate along not only current but also past input-vector directions. Simulation results show that the proposed algorithm exhibits a fast convergence rate and an enhanced tracking performance with noisy correlated inputs.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2013.2263134</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2013-07, Vol.20 (7), p.693-696
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_6516006
source IEEE Electronic Library (IEL)
subjects Approximation algorithms
Bias-compensated LS
Computational complexity
Convergence
Finite impulse response filters
Noise measurement
noisy FIR model
Signal processing algorithms
total least-squares
Vectors
title An Efficient Line-Search Algorithm for Unbiased Recursive Least-Squares Filtering With Noisy Inputs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T00%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Line-Search%20Algorithm%20for%20Unbiased%20Recursive%20Least-Squares%20Filtering%20With%20Noisy%20Inputs&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=ByungHoon%20Kang&rft.date=2013-07-01&rft.volume=20&rft.issue=7&rft.spage=693&rft.epage=696&rft.pages=693-696&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2013.2263134&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2013_2263134%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6516006&rfr_iscdi=true