An Efficient Line-Search Algorithm for Unbiased Recursive Least-Squares Filtering With Noisy Inputs

This letter proposes a new algorithm for efficiently finding an unbiased RLS estimate of FIR models with noisy inputs. The unbiased estimate is obtained without knowing any a priori information via a new cost. Furthermore, to reduce computational complexity, the estimate is updated along the current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2013-07, Vol.20 (7), p.693-696
Hauptverfasser: ByungHoon Kang, PooGyeon Park
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter proposes a new algorithm for efficiently finding an unbiased RLS estimate of FIR models with noisy inputs. The unbiased estimate is obtained without knowing any a priori information via a new cost. Furthermore, to reduce computational complexity, the estimate is updated along the current input-vector direction and the corresponding gain is efficiently computed. In addition, to increase the convergence rate, the algorithm is extended to update the estimate along not only current but also past input-vector directions. Simulation results show that the proposed algorithm exhibits a fast convergence rate and an enhanced tracking performance with noisy correlated inputs.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2013.2263134