The Weight Enumerator of Three Families of Cyclic Codes

Cyclic codes are a subclass of linear codes and have wide applications in consumer electronics, data storage systems, and communication systems due to their efficient encoding and decoding algorithms. Cyclic codes with many zeros and their dual codes have been a subject of study for many years. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2013-09, Vol.59 (9), p.6002-6009
Hauptverfasser: Zhou, Zhengchun, Zhang, Aixian, Ding, Cunsheng, Xiong, Maosheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6009
container_issue 9
container_start_page 6002
container_title IEEE transactions on information theory
container_volume 59
creator Zhou, Zhengchun
Zhang, Aixian
Ding, Cunsheng
Xiong, Maosheng
description Cyclic codes are a subclass of linear codes and have wide applications in consumer electronics, data storage systems, and communication systems due to their efficient encoding and decoding algorithms. Cyclic codes with many zeros and their dual codes have been a subject of study for many years. However, their weight distributions are known only for a very small number of cases. In general, the calculation of the weight distribution of cyclic codes is heavily based on the evaluation of some exponential sums over finite fields. Very recently, Li studied a class of p-ary cyclic codes of length p 2m -1, where p is a prime and m is odd. They determined the weight distribution of this class of cyclic codes by establishing a connection between the involved exponential sums with the spectrum of Hermitian forms graphs. In this paper, this class of p-ary cyclic codes is generalized and the weight distribution of the generalized cyclic codes is settled for both even m and odd m along with the idea of Li The weight distributions of two related families of cyclic codes are also determined.
doi_str_mv 10.1109/TIT.2013.2262095
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6514541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6514541</ieee_id><sourcerecordid>3051472761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-56d298bf72ce48eaea0615d2cad425986c7673e8e6051577850e2d7d548f04d3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wcuCeNyaZDNJ9iiL1ULBy4LHEJNZm7Lt1mR76L83paWnYWbeezN8hDwyOmOM1q_top1xyqoZ55LTGq7IhAGospYgrsmEUqbLWgh9S-5SWudWAOMTotoVFt8Yfldj8b7dbzDacYjF0BXtKiIWc7sJfcB0nDQH1wdXNIPHdE9uOtsnfDjXKWnn723zWS6_PhbN27J0lazGEqTntf7pFHcoNFq0VDLw3FkvONRaOiVVhRolBQZKaaDIvfIgdEeFr6bk-RS7i8PfHtNo1sM-bvNFwwSXGjhwkVX0pHJxSCliZ3YxbGw8GEbNkY7JdMyRjjnTyZaXc7BNzvZdtFsX0sXH81uqYjTrnk66gIiXtYSMT7DqH_oYaq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426852524</pqid></control><display><type>article</type><title>The Weight Enumerator of Three Families of Cyclic Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Zhengchun ; Zhang, Aixian ; Ding, Cunsheng ; Xiong, Maosheng</creator><creatorcontrib>Zhou, Zhengchun ; Zhang, Aixian ; Ding, Cunsheng ; Xiong, Maosheng</creatorcontrib><description>Cyclic codes are a subclass of linear codes and have wide applications in consumer electronics, data storage systems, and communication systems due to their efficient encoding and decoding algorithms. Cyclic codes with many zeros and their dual codes have been a subject of study for many years. However, their weight distributions are known only for a very small number of cases. In general, the calculation of the weight distribution of cyclic codes is heavily based on the evaluation of some exponential sums over finite fields. Very recently, Li studied a class of p-ary cyclic codes of length p 2m -1, where p is a prime and m is odd. They determined the weight distribution of this class of cyclic codes by establishing a connection between the involved exponential sums with the spectrum of Hermitian forms graphs. In this paper, this class of p-ary cyclic codes is generalized and the weight distribution of the generalized cyclic codes is settled for both even m and odd m along with the idea of Li The weight distributions of two related families of cyclic codes are also determined.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2013.2262095</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Codes ; Coding theory ; Coding, codes ; Communications systems ; Cyclic codes ; Educational institutions ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; exponential sum ; Hermitian forms graphs ; Information storage ; Information theory ; Information, signal and communications theory ; Linear codes ; Polynomials ; quadratic form ; Signal and communications theory ; Telecommunications and information theory ; Vectors ; Weight ; weight distribution</subject><ispartof>IEEE transactions on information theory, 2013-09, Vol.59 (9), p.6002-6009</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-56d298bf72ce48eaea0615d2cad425986c7673e8e6051577850e2d7d548f04d3</citedby><cites>FETCH-LOGICAL-c363t-56d298bf72ce48eaea0615d2cad425986c7673e8e6051577850e2d7d548f04d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6514541$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6514541$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27677310$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Zhengchun</creatorcontrib><creatorcontrib>Zhang, Aixian</creatorcontrib><creatorcontrib>Ding, Cunsheng</creatorcontrib><creatorcontrib>Xiong, Maosheng</creatorcontrib><title>The Weight Enumerator of Three Families of Cyclic Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Cyclic codes are a subclass of linear codes and have wide applications in consumer electronics, data storage systems, and communication systems due to their efficient encoding and decoding algorithms. Cyclic codes with many zeros and their dual codes have been a subject of study for many years. However, their weight distributions are known only for a very small number of cases. In general, the calculation of the weight distribution of cyclic codes is heavily based on the evaluation of some exponential sums over finite fields. Very recently, Li studied a class of p-ary cyclic codes of length p 2m -1, where p is a prime and m is odd. They determined the weight distribution of this class of cyclic codes by establishing a connection between the involved exponential sums with the spectrum of Hermitian forms graphs. In this paper, this class of p-ary cyclic codes is generalized and the weight distribution of the generalized cyclic codes is settled for both even m and odd m along with the idea of Li The weight distributions of two related families of cyclic codes are also determined.</description><subject>Applied sciences</subject><subject>Codes</subject><subject>Coding theory</subject><subject>Coding, codes</subject><subject>Communications systems</subject><subject>Cyclic codes</subject><subject>Educational institutions</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>exponential sum</subject><subject>Hermitian forms graphs</subject><subject>Information storage</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Linear codes</subject><subject>Polynomials</subject><subject>quadratic form</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><subject>Weight</subject><subject>weight distribution</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKt3wcuCeNyaZDNJ9iiL1ULBy4LHEJNZm7Lt1mR76L83paWnYWbeezN8hDwyOmOM1q_top1xyqoZ55LTGq7IhAGospYgrsmEUqbLWgh9S-5SWudWAOMTotoVFt8Yfldj8b7dbzDacYjF0BXtKiIWc7sJfcB0nDQH1wdXNIPHdE9uOtsnfDjXKWnn723zWS6_PhbN27J0lazGEqTntf7pFHcoNFq0VDLw3FkvONRaOiVVhRolBQZKaaDIvfIgdEeFr6bk-RS7i8PfHtNo1sM-bvNFwwSXGjhwkVX0pHJxSCliZ3YxbGw8GEbNkY7JdMyRjjnTyZaXc7BNzvZdtFsX0sXH81uqYjTrnk66gIiXtYSMT7DqH_oYaq4</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Zhou, Zhengchun</creator><creator>Zhang, Aixian</creator><creator>Ding, Cunsheng</creator><creator>Xiong, Maosheng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130901</creationdate><title>The Weight Enumerator of Three Families of Cyclic Codes</title><author>Zhou, Zhengchun ; Zhang, Aixian ; Ding, Cunsheng ; Xiong, Maosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-56d298bf72ce48eaea0615d2cad425986c7673e8e6051577850e2d7d548f04d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Codes</topic><topic>Coding theory</topic><topic>Coding, codes</topic><topic>Communications systems</topic><topic>Cyclic codes</topic><topic>Educational institutions</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>exponential sum</topic><topic>Hermitian forms graphs</topic><topic>Information storage</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Linear codes</topic><topic>Polynomials</topic><topic>quadratic form</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><topic>Weight</topic><topic>weight distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhengchun</creatorcontrib><creatorcontrib>Zhang, Aixian</creatorcontrib><creatorcontrib>Ding, Cunsheng</creatorcontrib><creatorcontrib>Xiong, Maosheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Zhengchun</au><au>Zhang, Aixian</au><au>Ding, Cunsheng</au><au>Xiong, Maosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Weight Enumerator of Three Families of Cyclic Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>59</volume><issue>9</issue><spage>6002</spage><epage>6009</epage><pages>6002-6009</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Cyclic codes are a subclass of linear codes and have wide applications in consumer electronics, data storage systems, and communication systems due to their efficient encoding and decoding algorithms. Cyclic codes with many zeros and their dual codes have been a subject of study for many years. However, their weight distributions are known only for a very small number of cases. In general, the calculation of the weight distribution of cyclic codes is heavily based on the evaluation of some exponential sums over finite fields. Very recently, Li studied a class of p-ary cyclic codes of length p 2m -1, where p is a prime and m is odd. They determined the weight distribution of this class of cyclic codes by establishing a connection between the involved exponential sums with the spectrum of Hermitian forms graphs. In this paper, this class of p-ary cyclic codes is generalized and the weight distribution of the generalized cyclic codes is settled for both even m and odd m along with the idea of Li The weight distributions of two related families of cyclic codes are also determined.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2013.2262095</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2013-09, Vol.59 (9), p.6002-6009
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_6514541
source IEEE Electronic Library (IEL)
subjects Applied sciences
Codes
Coding theory
Coding, codes
Communications systems
Cyclic codes
Educational institutions
Eigenvalues and eigenfunctions
Exact sciences and technology
exponential sum
Hermitian forms graphs
Information storage
Information theory
Information, signal and communications theory
Linear codes
Polynomials
quadratic form
Signal and communications theory
Telecommunications and information theory
Vectors
Weight
weight distribution
title The Weight Enumerator of Three Families of Cyclic Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Weight%20Enumerator%20of%20Three%20Families%20of%20Cyclic%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Zhou,%20Zhengchun&rft.date=2013-09-01&rft.volume=59&rft.issue=9&rft.spage=6002&rft.epage=6009&rft.pages=6002-6009&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2013.2262095&rft_dat=%3Cproquest_RIE%3E3051472761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426852524&rft_id=info:pmid/&rft_ieee_id=6514541&rfr_iscdi=true