STLN-based channel estimation using superimposed training and first-order statistics

In this paper, Channel estimation using superimposed training and first-order statistics is considered. Information-induced interference matrix in channel estimation is of Toeplitz structure, which can be utilized for deconvolution of the system equation. A structured total least norm (STLN) approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chunquan He, Gaoqi Dou, Jun Gao, Cheng Fan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue
container_start_page 408
container_title
container_volume
creator Chunquan He
Gaoqi Dou
Jun Gao
Cheng Fan
description In this paper, Channel estimation using superimposed training and first-order statistics is considered. Information-induced interference matrix in channel estimation is of Toeplitz structure, which can be utilized for deconvolution of the system equation. A structured total least norm (STLN) approach is introduced to improve the estimation performance. Simulation results show the enhancement performance of the STLN estimator when compared with the LS, total least squares (TLS) and data least squares (DLS) estimators.
doi_str_mv 10.1109/ICCT.2012.6511252
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6511252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6511252</ieee_id><sourcerecordid>6511252</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d2e67fefa2bf9c4a3e5407914e744e2e0b9cff7296ea66fab0e49bd5b20e11d73</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxSMiqLUfQLzkC-yayWYTcpTFP4VFD67grSSbiUbabEnSg9_eLS14mpkf8x6PR8gtsBqA6ftV1w01Z8Br2QLwlp-RaxBSNRwYfJ7_HwwuyTLnHzZvwOSMr8jwPvSvlTUZHR2_TYy4oZhL2JoSpkj3OcQvmvc7TGG7mw5fJZkQD9RER31IuVRTcphoLrNmlo75hlx4s8m4PM0F-Xh6HLqXqn97XnUPfRVAtaVyHKXy6A23Xo_CNNgKpjQIVEIgR2b16L3iWqKR0hvLUGjrWssZAjjVLMjd0Tcg4no3RzTpd31qofkDvEFSpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>STLN-based channel estimation using superimposed training and first-order statistics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chunquan He ; Gaoqi Dou ; Jun Gao ; Cheng Fan</creator><creatorcontrib>Chunquan He ; Gaoqi Dou ; Jun Gao ; Cheng Fan</creatorcontrib><description>In this paper, Channel estimation using superimposed training and first-order statistics is considered. Information-induced interference matrix in channel estimation is of Toeplitz structure, which can be utilized for deconvolution of the system equation. A structured total least norm (STLN) approach is introduced to improve the estimation performance. Simulation results show the enhancement performance of the STLN estimator when compared with the LS, total least squares (TLS) and data least squares (DLS) estimators.</description><identifier>ISBN: 1467321001</identifier><identifier>ISBN: 9781467321006</identifier><identifier>EISBN: 146732101X</identifier><identifier>EISBN: 9781467321013</identifier><identifier>EISBN: 1467320994</identifier><identifier>EISBN: 9781467320993</identifier><identifier>DOI: 10.1109/ICCT.2012.6511252</identifier><language>eng</language><publisher>IEEE</publisher><subject>channel estimation ; least squares ; structured total least squares norm ; superimposed training</subject><ispartof>2012 IEEE 14th International Conference on Communication Technology, 2012, p.408-412</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6511252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6511252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chunquan He</creatorcontrib><creatorcontrib>Gaoqi Dou</creatorcontrib><creatorcontrib>Jun Gao</creatorcontrib><creatorcontrib>Cheng Fan</creatorcontrib><title>STLN-based channel estimation using superimposed training and first-order statistics</title><title>2012 IEEE 14th International Conference on Communication Technology</title><addtitle>ICCT</addtitle><description>In this paper, Channel estimation using superimposed training and first-order statistics is considered. Information-induced interference matrix in channel estimation is of Toeplitz structure, which can be utilized for deconvolution of the system equation. A structured total least norm (STLN) approach is introduced to improve the estimation performance. Simulation results show the enhancement performance of the STLN estimator when compared with the LS, total least squares (TLS) and data least squares (DLS) estimators.</description><subject>channel estimation</subject><subject>least squares</subject><subject>structured total least squares norm</subject><subject>superimposed training</subject><isbn>1467321001</isbn><isbn>9781467321006</isbn><isbn>146732101X</isbn><isbn>9781467321013</isbn><isbn>1467320994</isbn><isbn>9781467320993</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE9LAzEQxSMiqLUfQLzkC-yayWYTcpTFP4VFD67grSSbiUbabEnSg9_eLS14mpkf8x6PR8gtsBqA6ftV1w01Z8Br2QLwlp-RaxBSNRwYfJ7_HwwuyTLnHzZvwOSMr8jwPvSvlTUZHR2_TYy4oZhL2JoSpkj3OcQvmvc7TGG7mw5fJZkQD9RER31IuVRTcphoLrNmlo75hlx4s8m4PM0F-Xh6HLqXqn97XnUPfRVAtaVyHKXy6A23Xo_CNNgKpjQIVEIgR2b16L3iWqKR0hvLUGjrWssZAjjVLMjd0Tcg4no3RzTpd31qofkDvEFSpQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Chunquan He</creator><creator>Gaoqi Dou</creator><creator>Jun Gao</creator><creator>Cheng Fan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>STLN-based channel estimation using superimposed training and first-order statistics</title><author>Chunquan He ; Gaoqi Dou ; Jun Gao ; Cheng Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d2e67fefa2bf9c4a3e5407914e744e2e0b9cff7296ea66fab0e49bd5b20e11d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>channel estimation</topic><topic>least squares</topic><topic>structured total least squares norm</topic><topic>superimposed training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chunquan He</creatorcontrib><creatorcontrib>Gaoqi Dou</creatorcontrib><creatorcontrib>Jun Gao</creatorcontrib><creatorcontrib>Cheng Fan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chunquan He</au><au>Gaoqi Dou</au><au>Jun Gao</au><au>Cheng Fan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>STLN-based channel estimation using superimposed training and first-order statistics</atitle><btitle>2012 IEEE 14th International Conference on Communication Technology</btitle><stitle>ICCT</stitle><date>2012-11</date><risdate>2012</risdate><spage>408</spage><epage>412</epage><pages>408-412</pages><isbn>1467321001</isbn><isbn>9781467321006</isbn><eisbn>146732101X</eisbn><eisbn>9781467321013</eisbn><eisbn>1467320994</eisbn><eisbn>9781467320993</eisbn><abstract>In this paper, Channel estimation using superimposed training and first-order statistics is considered. Information-induced interference matrix in channel estimation is of Toeplitz structure, which can be utilized for deconvolution of the system equation. A structured total least norm (STLN) approach is introduced to improve the estimation performance. Simulation results show the enhancement performance of the STLN estimator when compared with the LS, total least squares (TLS) and data least squares (DLS) estimators.</abstract><pub>IEEE</pub><doi>10.1109/ICCT.2012.6511252</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467321001
ispartof 2012 IEEE 14th International Conference on Communication Technology, 2012, p.408-412
issn
language eng
recordid cdi_ieee_primary_6511252
source IEEE Electronic Library (IEL) Conference Proceedings
subjects channel estimation
least squares
structured total least squares norm
superimposed training
title STLN-based channel estimation using superimposed training and first-order statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=STLN-based%20channel%20estimation%20using%20superimposed%20training%20and%20first-order%20statistics&rft.btitle=2012%20IEEE%2014th%20International%20Conference%20on%20Communication%20Technology&rft.au=Chunquan%20He&rft.date=2012-11&rft.spage=408&rft.epage=412&rft.pages=408-412&rft.isbn=1467321001&rft.isbn_list=9781467321006&rft_id=info:doi/10.1109/ICCT.2012.6511252&rft_dat=%3Cieee_6IE%3E6511252%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146732101X&rft.eisbn_list=9781467321013&rft.eisbn_list=1467320994&rft.eisbn_list=9781467320993&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6511252&rfr_iscdi=true