STLN-based channel estimation using superimposed training and first-order statistics
In this paper, Channel estimation using superimposed training and first-order statistics is considered. Information-induced interference matrix in channel estimation is of Toeplitz structure, which can be utilized for deconvolution of the system equation. A structured total least norm (STLN) approac...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | |
container_start_page | 408 |
container_title | |
container_volume | |
creator | Chunquan He Gaoqi Dou Jun Gao Cheng Fan |
description | In this paper, Channel estimation using superimposed training and first-order statistics is considered. Information-induced interference matrix in channel estimation is of Toeplitz structure, which can be utilized for deconvolution of the system equation. A structured total least norm (STLN) approach is introduced to improve the estimation performance. Simulation results show the enhancement performance of the STLN estimator when compared with the LS, total least squares (TLS) and data least squares (DLS) estimators. |
doi_str_mv | 10.1109/ICCT.2012.6511252 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6511252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6511252</ieee_id><sourcerecordid>6511252</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d2e67fefa2bf9c4a3e5407914e744e2e0b9cff7296ea66fab0e49bd5b20e11d73</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxSMiqLUfQLzkC-yayWYTcpTFP4VFD67grSSbiUbabEnSg9_eLS14mpkf8x6PR8gtsBqA6ftV1w01Z8Br2QLwlp-RaxBSNRwYfJ7_HwwuyTLnHzZvwOSMr8jwPvSvlTUZHR2_TYy4oZhL2JoSpkj3OcQvmvc7TGG7mw5fJZkQD9RER31IuVRTcphoLrNmlo75hlx4s8m4PM0F-Xh6HLqXqn97XnUPfRVAtaVyHKXy6A23Xo_CNNgKpjQIVEIgR2b16L3iWqKR0hvLUGjrWssZAjjVLMjd0Tcg4no3RzTpd31qofkDvEFSpQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>STLN-based channel estimation using superimposed training and first-order statistics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chunquan He ; Gaoqi Dou ; Jun Gao ; Cheng Fan</creator><creatorcontrib>Chunquan He ; Gaoqi Dou ; Jun Gao ; Cheng Fan</creatorcontrib><description>In this paper, Channel estimation using superimposed training and first-order statistics is considered. Information-induced interference matrix in channel estimation is of Toeplitz structure, which can be utilized for deconvolution of the system equation. A structured total least norm (STLN) approach is introduced to improve the estimation performance. Simulation results show the enhancement performance of the STLN estimator when compared with the LS, total least squares (TLS) and data least squares (DLS) estimators.</description><identifier>ISBN: 1467321001</identifier><identifier>ISBN: 9781467321006</identifier><identifier>EISBN: 146732101X</identifier><identifier>EISBN: 9781467321013</identifier><identifier>EISBN: 1467320994</identifier><identifier>EISBN: 9781467320993</identifier><identifier>DOI: 10.1109/ICCT.2012.6511252</identifier><language>eng</language><publisher>IEEE</publisher><subject>channel estimation ; least squares ; structured total least squares norm ; superimposed training</subject><ispartof>2012 IEEE 14th International Conference on Communication Technology, 2012, p.408-412</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6511252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6511252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chunquan He</creatorcontrib><creatorcontrib>Gaoqi Dou</creatorcontrib><creatorcontrib>Jun Gao</creatorcontrib><creatorcontrib>Cheng Fan</creatorcontrib><title>STLN-based channel estimation using superimposed training and first-order statistics</title><title>2012 IEEE 14th International Conference on Communication Technology</title><addtitle>ICCT</addtitle><description>In this paper, Channel estimation using superimposed training and first-order statistics is considered. Information-induced interference matrix in channel estimation is of Toeplitz structure, which can be utilized for deconvolution of the system equation. A structured total least norm (STLN) approach is introduced to improve the estimation performance. Simulation results show the enhancement performance of the STLN estimator when compared with the LS, total least squares (TLS) and data least squares (DLS) estimators.</description><subject>channel estimation</subject><subject>least squares</subject><subject>structured total least squares norm</subject><subject>superimposed training</subject><isbn>1467321001</isbn><isbn>9781467321006</isbn><isbn>146732101X</isbn><isbn>9781467321013</isbn><isbn>1467320994</isbn><isbn>9781467320993</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE9LAzEQxSMiqLUfQLzkC-yayWYTcpTFP4VFD67grSSbiUbabEnSg9_eLS14mpkf8x6PR8gtsBqA6ftV1w01Z8Br2QLwlp-RaxBSNRwYfJ7_HwwuyTLnHzZvwOSMr8jwPvSvlTUZHR2_TYy4oZhL2JoSpkj3OcQvmvc7TGG7mw5fJZkQD9RER31IuVRTcphoLrNmlo75hlx4s8m4PM0F-Xh6HLqXqn97XnUPfRVAtaVyHKXy6A23Xo_CNNgKpjQIVEIgR2b16L3iWqKR0hvLUGjrWssZAjjVLMjd0Tcg4no3RzTpd31qofkDvEFSpQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Chunquan He</creator><creator>Gaoqi Dou</creator><creator>Jun Gao</creator><creator>Cheng Fan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>STLN-based channel estimation using superimposed training and first-order statistics</title><author>Chunquan He ; Gaoqi Dou ; Jun Gao ; Cheng Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d2e67fefa2bf9c4a3e5407914e744e2e0b9cff7296ea66fab0e49bd5b20e11d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>channel estimation</topic><topic>least squares</topic><topic>structured total least squares norm</topic><topic>superimposed training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chunquan He</creatorcontrib><creatorcontrib>Gaoqi Dou</creatorcontrib><creatorcontrib>Jun Gao</creatorcontrib><creatorcontrib>Cheng Fan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chunquan He</au><au>Gaoqi Dou</au><au>Jun Gao</au><au>Cheng Fan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>STLN-based channel estimation using superimposed training and first-order statistics</atitle><btitle>2012 IEEE 14th International Conference on Communication Technology</btitle><stitle>ICCT</stitle><date>2012-11</date><risdate>2012</risdate><spage>408</spage><epage>412</epage><pages>408-412</pages><isbn>1467321001</isbn><isbn>9781467321006</isbn><eisbn>146732101X</eisbn><eisbn>9781467321013</eisbn><eisbn>1467320994</eisbn><eisbn>9781467320993</eisbn><abstract>In this paper, Channel estimation using superimposed training and first-order statistics is considered. Information-induced interference matrix in channel estimation is of Toeplitz structure, which can be utilized for deconvolution of the system equation. A structured total least norm (STLN) approach is introduced to improve the estimation performance. Simulation results show the enhancement performance of the STLN estimator when compared with the LS, total least squares (TLS) and data least squares (DLS) estimators.</abstract><pub>IEEE</pub><doi>10.1109/ICCT.2012.6511252</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467321001 |
ispartof | 2012 IEEE 14th International Conference on Communication Technology, 2012, p.408-412 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6511252 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | channel estimation least squares structured total least squares norm superimposed training |
title | STLN-based channel estimation using superimposed training and first-order statistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=STLN-based%20channel%20estimation%20using%20superimposed%20training%20and%20first-order%20statistics&rft.btitle=2012%20IEEE%2014th%20International%20Conference%20on%20Communication%20Technology&rft.au=Chunquan%20He&rft.date=2012-11&rft.spage=408&rft.epage=412&rft.pages=408-412&rft.isbn=1467321001&rft.isbn_list=9781467321006&rft_id=info:doi/10.1109/ICCT.2012.6511252&rft_dat=%3Cieee_6IE%3E6511252%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146732101X&rft.eisbn_list=9781467321013&rft.eisbn_list=1467320994&rft.eisbn_list=9781467320993&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6511252&rfr_iscdi=true |