V94.2 gas turbine identification using neural network

This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yari, M., Aliyari Shoorehdeli, Mahdi, Yousefi, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue
container_start_page 523
container_title
container_volume
creator Yari, M.
Aliyari Shoorehdeli, Mahdi
Yousefi, I.
description This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle as inputs and compressor output pressure, compressor output temperature, fuel pressure, turbine output power and turbine output temperature as outputs. To simplify identification process, the system turns into MISO 2 systems to the number of outputs, and then correlation analysis is used to examine the dependence of the outputs to each input and other outputs. For turbine identification, dynamic linear models are estimated and then Feedforward neural network with one hidden layer is trained. The result shows dynamic linear models have poor performance in comparison with Feedforward neural network with one hidden layer. The neural network is able to identify a predictor model with fitness over 96% for outputs of V94.2 gas turbine.
doi_str_mv 10.1109/ICRoM.2013.6510160
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6510160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6510160</ieee_id><sourcerecordid>6510160</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f825486bb0d22fd5cab3eb46636da265195aac6e949fe500c7711cfbbf00b8573</originalsourceid><addsrcrecordid>eNo9j81KxDAUhSMiqOO8gG7yAq03f7fNUoo6AyOCDOJuSNJkiI6pNCni21twcPVxFufjHEKuGdSMgb5ddy_DU82BiRoVA4ZwQi6ZxEaolsHb6X8AjedkmfM7AMxN1EpcEPWqZc3p3mRaptHG5GnsfSoxRGdKHBKdckx7mvw0msOM8j2MH1fkLJhD9ssjF2T7cL_tVtXm-XHd3W2qqKFUoeVKtmgt9JyHXjljhbcSUWBv-DxWK2Mcei118ArANQ1jLlgbAGyrGrEgN3_a6L3ffY3x04w_u-NL8Qto7kXT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>V94.2 gas turbine identification using neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yari, M. ; Aliyari Shoorehdeli, Mahdi ; Yousefi, I.</creator><creatorcontrib>Yari, M. ; Aliyari Shoorehdeli, Mahdi ; Yousefi, I.</creatorcontrib><description>This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle as inputs and compressor output pressure, compressor output temperature, fuel pressure, turbine output power and turbine output temperature as outputs. To simplify identification process, the system turns into MISO 2 systems to the number of outputs, and then correlation analysis is used to examine the dependence of the outputs to each input and other outputs. For turbine identification, dynamic linear models are estimated and then Feedforward neural network with one hidden layer is trained. The result shows dynamic linear models have poor performance in comparison with Feedforward neural network with one hidden layer. The neural network is able to identify a predictor model with fitness over 96% for outputs of V94.2 gas turbine.</description><identifier>ISBN: 1467358096</identifier><identifier>ISBN: 9781467358095</identifier><identifier>EISBN: 146735810X</identifier><identifier>EISBN: 1467358118</identifier><identifier>EISBN: 9781467358118</identifier><identifier>EISBN: 9781467358101</identifier><identifier>DOI: 10.1109/ICRoM.2013.6510160</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; gas turbine ; Heating ; linear model ; MATLAB ; neural network ; Neural networks ; nonlinear model ; system identification ; Turbines</subject><ispartof>2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), 2013, p.523-529</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6510160$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6510160$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yari, M.</creatorcontrib><creatorcontrib>Aliyari Shoorehdeli, Mahdi</creatorcontrib><creatorcontrib>Yousefi, I.</creatorcontrib><title>V94.2 gas turbine identification using neural network</title><title>2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)</title><addtitle>ICRoM</addtitle><description>This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle as inputs and compressor output pressure, compressor output temperature, fuel pressure, turbine output power and turbine output temperature as outputs. To simplify identification process, the system turns into MISO 2 systems to the number of outputs, and then correlation analysis is used to examine the dependence of the outputs to each input and other outputs. For turbine identification, dynamic linear models are estimated and then Feedforward neural network with one hidden layer is trained. The result shows dynamic linear models have poor performance in comparison with Feedforward neural network with one hidden layer. The neural network is able to identify a predictor model with fitness over 96% for outputs of V94.2 gas turbine.</description><subject>Computational modeling</subject><subject>gas turbine</subject><subject>Heating</subject><subject>linear model</subject><subject>MATLAB</subject><subject>neural network</subject><subject>Neural networks</subject><subject>nonlinear model</subject><subject>system identification</subject><subject>Turbines</subject><isbn>1467358096</isbn><isbn>9781467358095</isbn><isbn>146735810X</isbn><isbn>1467358118</isbn><isbn>9781467358118</isbn><isbn>9781467358101</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j81KxDAUhSMiqOO8gG7yAq03f7fNUoo6AyOCDOJuSNJkiI6pNCni21twcPVxFufjHEKuGdSMgb5ddy_DU82BiRoVA4ZwQi6ZxEaolsHb6X8AjedkmfM7AMxN1EpcEPWqZc3p3mRaptHG5GnsfSoxRGdKHBKdckx7mvw0msOM8j2MH1fkLJhD9ssjF2T7cL_tVtXm-XHd3W2qqKFUoeVKtmgt9JyHXjljhbcSUWBv-DxWK2Mcei118ArANQ1jLlgbAGyrGrEgN3_a6L3ffY3x04w_u-NL8Qto7kXT</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Yari, M.</creator><creator>Aliyari Shoorehdeli, Mahdi</creator><creator>Yousefi, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201302</creationdate><title>V94.2 gas turbine identification using neural network</title><author>Yari, M. ; Aliyari Shoorehdeli, Mahdi ; Yousefi, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f825486bb0d22fd5cab3eb46636da265195aac6e949fe500c7711cfbbf00b8573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computational modeling</topic><topic>gas turbine</topic><topic>Heating</topic><topic>linear model</topic><topic>MATLAB</topic><topic>neural network</topic><topic>Neural networks</topic><topic>nonlinear model</topic><topic>system identification</topic><topic>Turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Yari, M.</creatorcontrib><creatorcontrib>Aliyari Shoorehdeli, Mahdi</creatorcontrib><creatorcontrib>Yousefi, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yari, M.</au><au>Aliyari Shoorehdeli, Mahdi</au><au>Yousefi, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>V94.2 gas turbine identification using neural network</atitle><btitle>2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)</btitle><stitle>ICRoM</stitle><date>2013-02</date><risdate>2013</risdate><spage>523</spage><epage>529</epage><pages>523-529</pages><isbn>1467358096</isbn><isbn>9781467358095</isbn><eisbn>146735810X</eisbn><eisbn>1467358118</eisbn><eisbn>9781467358118</eisbn><eisbn>9781467358101</eisbn><abstract>This paper presents the identification of V94.2 gas turbine. This turbine is built by Siemens. It has 162.1 MW nominal power and 50 Hz nominal frequency and is located at Kermanshah power plant, Kermanshah city of Iran. The stored data from turbine include fuel pressure valve angle and IGV 1 angle as inputs and compressor output pressure, compressor output temperature, fuel pressure, turbine output power and turbine output temperature as outputs. To simplify identification process, the system turns into MISO 2 systems to the number of outputs, and then correlation analysis is used to examine the dependence of the outputs to each input and other outputs. For turbine identification, dynamic linear models are estimated and then Feedforward neural network with one hidden layer is trained. The result shows dynamic linear models have poor performance in comparison with Feedforward neural network with one hidden layer. The neural network is able to identify a predictor model with fitness over 96% for outputs of V94.2 gas turbine.</abstract><pub>IEEE</pub><doi>10.1109/ICRoM.2013.6510160</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467358096
ispartof 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), 2013, p.523-529
issn
language eng
recordid cdi_ieee_primary_6510160
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
gas turbine
Heating
linear model
MATLAB
neural network
Neural networks
nonlinear model
system identification
Turbines
title V94.2 gas turbine identification using neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=V94.2%20gas%20turbine%20identification%20using%20neural%20network&rft.btitle=2013%20First%20RSI/ISM%20International%20Conference%20on%20Robotics%20and%20Mechatronics%20(ICRoM)&rft.au=Yari,%20M.&rft.date=2013-02&rft.spage=523&rft.epage=529&rft.pages=523-529&rft.isbn=1467358096&rft.isbn_list=9781467358095&rft_id=info:doi/10.1109/ICRoM.2013.6510160&rft_dat=%3Cieee_6IE%3E6510160%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146735810X&rft.eisbn_list=1467358118&rft.eisbn_list=9781467358118&rft.eisbn_list=9781467358101&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6510160&rfr_iscdi=true