An asymptotic property of model selection criteria

Probability models are estimated by use of penalized log-likelihood criteria related to Akaike (1973) information criterion (AIC) and minimum description length (MDL). The accuracies of the density estimators are shown to be related to the tradeoff between three terms: the accuracy of approximation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1998-01, Vol.44 (1), p.95-116
Hauptverfasser: Yuhong Yang, Barron, A.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue 1
container_start_page 95
container_title IEEE transactions on information theory
container_volume 44
creator Yuhong Yang
Barron, A.R.
description Probability models are estimated by use of penalized log-likelihood criteria related to Akaike (1973) information criterion (AIC) and minimum description length (MDL). The accuracies of the density estimators are shown to be related to the tradeoff between three terms: the accuracy of approximation, the model dimension, and the descriptive complexity of the model classes. The asymptotic risk is determined under conditions on the penalty term, and is shown to be minimax optimal for some cases. As an application, we show that the optimal rate of convergence is simultaneously achieved for log-densities in Sobolev spaces W/sub 2//sup s/(U) without knowing the smoothness parameter s and norm parameter U in advance. Applications to neural network models and sparse density function estimation are also provided.
doi_str_mv 10.1109/18.650993
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_650993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>650993</ieee_id><sourcerecordid>28480016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-c7dd6e6f1aaea9a0bf27b3971c727fd9b20fdf21d68d32a949192ad99fafa553</originalsourceid><addsrcrecordid>eNpdkD1rwzAQhkVpoWnaoWsn06HQwakkW5ZuDKFfEOiSXSjSCRxsy5WUIf--Di4dOh3HPTy89xJyz-iKMQovTK0aQQGqC7JgQsgSGlFfkgWlTJVQ1-qa3KR0mNZaML4gfD0UJp36MYfc2mKMYcSYT0XwRR8cdkXCDm1uw1DY2GaMrbklV950Ce9-55Ls3l53m49y-_X-uVlvS1tJmksrnWuw8cwYNGDo3nO5r0AyK7n0Dvaceuc5c41yFTdQAwNuHIA33ghRLcnTrJ0yfR8xZd23yWLXmQHDMWmuajW90Uzg4z_wEI5xmKJpBgL4pD3bnmfIxpBSRK_H2PYmnjSj-tycZkrPzU3sw8y2iPjH_R5_AMT0aE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195921925</pqid></control><display><type>article</type><title>An asymptotic property of model selection criteria</title><source>IEEE Electronic Library (IEL)</source><creator>Yuhong Yang ; Barron, A.R.</creator><creatorcontrib>Yuhong Yang ; Barron, A.R.</creatorcontrib><description>Probability models are estimated by use of penalized log-likelihood criteria related to Akaike (1973) information criterion (AIC) and minimum description length (MDL). The accuracies of the density estimators are shown to be related to the tradeoff between three terms: the accuracy of approximation, the model dimension, and the descriptive complexity of the model classes. The asymptotic risk is determined under conditions on the penalty term, and is shown to be minimax optimal for some cases. As an application, we show that the optimal rate of convergence is simultaneously achieved for log-densities in Sobolev spaces W/sub 2//sup s/(U) without knowing the smoothness parameter s and norm parameter U in advance. Applications to neural network models and sparse density function estimation are also provided.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.650993</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convergence ; Density functional theory ; Entropy ; Estimating techniques ; Extraterrestrial measurements ; Information processing ; Mathematical models ; Maximum likelihood estimation ; Minimax techniques ; Neural networks ; Parametric statistics ; Polynomials ; Spline</subject><ispartof>IEEE transactions on information theory, 1998-01, Vol.44 (1), p.95-116</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-c7dd6e6f1aaea9a0bf27b3971c727fd9b20fdf21d68d32a949192ad99fafa553</citedby><cites>FETCH-LOGICAL-c370t-c7dd6e6f1aaea9a0bf27b3971c727fd9b20fdf21d68d32a949192ad99fafa553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/650993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/650993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuhong Yang</creatorcontrib><creatorcontrib>Barron, A.R.</creatorcontrib><title>An asymptotic property of model selection criteria</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Probability models are estimated by use of penalized log-likelihood criteria related to Akaike (1973) information criterion (AIC) and minimum description length (MDL). The accuracies of the density estimators are shown to be related to the tradeoff between three terms: the accuracy of approximation, the model dimension, and the descriptive complexity of the model classes. The asymptotic risk is determined under conditions on the penalty term, and is shown to be minimax optimal for some cases. As an application, we show that the optimal rate of convergence is simultaneously achieved for log-densities in Sobolev spaces W/sub 2//sup s/(U) without knowing the smoothness parameter s and norm parameter U in advance. Applications to neural network models and sparse density function estimation are also provided.</description><subject>Convergence</subject><subject>Density functional theory</subject><subject>Entropy</subject><subject>Estimating techniques</subject><subject>Extraterrestrial measurements</subject><subject>Information processing</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Minimax techniques</subject><subject>Neural networks</subject><subject>Parametric statistics</subject><subject>Polynomials</subject><subject>Spline</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1rwzAQhkVpoWnaoWsn06HQwakkW5ZuDKFfEOiSXSjSCRxsy5WUIf--Di4dOh3HPTy89xJyz-iKMQovTK0aQQGqC7JgQsgSGlFfkgWlTJVQ1-qa3KR0mNZaML4gfD0UJp36MYfc2mKMYcSYT0XwRR8cdkXCDm1uw1DY2GaMrbklV950Ce9-55Ls3l53m49y-_X-uVlvS1tJmksrnWuw8cwYNGDo3nO5r0AyK7n0Dvaceuc5c41yFTdQAwNuHIA33ghRLcnTrJ0yfR8xZd23yWLXmQHDMWmuajW90Uzg4z_wEI5xmKJpBgL4pD3bnmfIxpBSRK_H2PYmnjSj-tycZkrPzU3sw8y2iPjH_R5_AMT0aE8</recordid><startdate>199801</startdate><enddate>199801</enddate><creator>Yuhong Yang</creator><creator>Barron, A.R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199801</creationdate><title>An asymptotic property of model selection criteria</title><author>Yuhong Yang ; Barron, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-c7dd6e6f1aaea9a0bf27b3971c727fd9b20fdf21d68d32a949192ad99fafa553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Convergence</topic><topic>Density functional theory</topic><topic>Entropy</topic><topic>Estimating techniques</topic><topic>Extraterrestrial measurements</topic><topic>Information processing</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Minimax techniques</topic><topic>Neural networks</topic><topic>Parametric statistics</topic><topic>Polynomials</topic><topic>Spline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuhong Yang</creatorcontrib><creatorcontrib>Barron, A.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuhong Yang</au><au>Barron, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic property of model selection criteria</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1998-01</date><risdate>1998</risdate><volume>44</volume><issue>1</issue><spage>95</spage><epage>116</epage><pages>95-116</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Probability models are estimated by use of penalized log-likelihood criteria related to Akaike (1973) information criterion (AIC) and minimum description length (MDL). The accuracies of the density estimators are shown to be related to the tradeoff between three terms: the accuracy of approximation, the model dimension, and the descriptive complexity of the model classes. The asymptotic risk is determined under conditions on the penalty term, and is shown to be minimax optimal for some cases. As an application, we show that the optimal rate of convergence is simultaneously achieved for log-densities in Sobolev spaces W/sub 2//sup s/(U) without knowing the smoothness parameter s and norm parameter U in advance. Applications to neural network models and sparse density function estimation are also provided.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.650993</doi><tpages>22</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1998-01, Vol.44 (1), p.95-116
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_650993
source IEEE Electronic Library (IEL)
subjects Convergence
Density functional theory
Entropy
Estimating techniques
Extraterrestrial measurements
Information processing
Mathematical models
Maximum likelihood estimation
Minimax techniques
Neural networks
Parametric statistics
Polynomials
Spline
title An asymptotic property of model selection criteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20property%20of%20model%20selection%20criteria&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Yuhong%20Yang&rft.date=1998-01&rft.volume=44&rft.issue=1&rft.spage=95&rft.epage=116&rft.pages=95-116&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.650993&rft_dat=%3Cproquest_RIE%3E28480016%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195921925&rft_id=info:pmid/&rft_ieee_id=650993&rfr_iscdi=true