Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method

The reduced basis method (RBM) generates low- order models for the solution of parametrized partial differential equations to allow for efficient evaluation in many-query and real-time contexts. We show the theoretical framework in which the RBM is applied to Maxwell's equations and present num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2013-06, Vol.61 (6), p.2265-2274
Hauptverfasser: Hess, M. W., Benner, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2274
container_issue 6
container_start_page 2265
container_title IEEE transactions on microwave theory and techniques
container_volume 61
creator Hess, M. W.
Benner, P.
description The reduced basis method (RBM) generates low- order models for the solution of parametrized partial differential equations to allow for efficient evaluation in many-query and real-time contexts. We show the theoretical framework in which the RBM is applied to Maxwell's equations and present numerical results for model reduction in frequency domain. Using rigorous error estimators, the RBM achieves low-order models under variation of material parameters and geometry. The RBM reduces model order by a factor of 50 to 100 and reduces compute time by a factor of 200 and more for numerical experiments using standard circuit elements.
doi_str_mv 10.1109/TMTT.2013.2258167
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6509472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6509472</ieee_id><sourcerecordid>2988664661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-ee943e3b99f53678af18bb6a3aab6558ab8b62181e7ea1d652dc81819581a7833</originalsourceid><addsrcrecordid>eNpdkEtLxDAQgIMouD5-gHgJiOila9I0r6Mu6wNcBK3nMG2nGum22rQ-_r1ZdvHgaRjmm9dHyBFnU86ZvcgXeT5NGRfTNJWGK71FJlxKnVil2TaZMMZNYjPDdsleCG8xzSQzE_J0DWGg809oRhh819KuprlfYnIL_bJrfUkX8P2FTXMW6PxjzQT6HHz7QodXpI9YjSVW9AqCD3SBw2tXHZCdGpqAh5u4T56v5_nsNrl_uLmbXd4npZBqSBBtJlAU1tZSKG2g5qYoFAiAQklpoDCFSrnhqBF4pWRalSamNv4H2gixT87Xc9_77mPEMLilD2W8FVrsxuB4xrWxIrMqoif_0Ldu7Nt4neNCyZUOm0aKr6my70LosXbvvV9C_-M4cyvNbqXZrTS7jebYc7qZDKGEpu6hLX34a0x1ZoQRLHLHa84j4l85rraZTsUvNc6ESw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365001492</pqid></control><display><type>article</type><title>Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method</title><source>IEEE Electronic Library (IEL)</source><creator>Hess, M. W. ; Benner, P.</creator><creatorcontrib>Hess, M. W. ; Benner, P.</creatorcontrib><description>The reduced basis method (RBM) generates low- order models for the solution of parametrized partial differential equations to allow for efficient evaluation in many-query and real-time contexts. We show the theoretical framework in which the RBM is applied to Maxwell's equations and present numerical results for model reduction in frequency domain. Using rigorous error estimators, the RBM achieves low-order models under variation of material parameters and geometry. The RBM reduces model order by a factor of 50 to 100 and reduces compute time by a factor of 200 and more for numerical experiments using standard circuit elements.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2013.2258167</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Approximation methods ; Circuits ; Computational modeling ; Electromagnetic analysis ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Estimators ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical model ; Mathematical models ; Maxwell equations ; Maxwell's equations ; Microwaves ; Permissible error ; Physics ; Real time ; reduced basis method (RBM) ; Reduced order systems ; Stability analysis ; Thermal stability</subject><ispartof>IEEE transactions on microwave theory and techniques, 2013-06, Vol.61 (6), p.2265-2274</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-ee943e3b99f53678af18bb6a3aab6558ab8b62181e7ea1d652dc81819581a7833</citedby><cites>FETCH-LOGICAL-c356t-ee943e3b99f53678af18bb6a3aab6558ab8b62181e7ea1d652dc81819581a7833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6509472$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6509472$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27483830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hess, M. W.</creatorcontrib><creatorcontrib>Benner, P.</creatorcontrib><title>Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>The reduced basis method (RBM) generates low- order models for the solution of parametrized partial differential equations to allow for efficient evaluation in many-query and real-time contexts. We show the theoretical framework in which the RBM is applied to Maxwell's equations and present numerical results for model reduction in frequency domain. Using rigorous error estimators, the RBM achieves low-order models under variation of material parameters and geometry. The RBM reduces model order by a factor of 50 to 100 and reduces compute time by a factor of 200 and more for numerical experiments using standard circuit elements.</description><subject>Applied classical electromagnetism</subject><subject>Approximation methods</subject><subject>Circuits</subject><subject>Computational modeling</subject><subject>Electromagnetic analysis</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Maxwell equations</subject><subject>Maxwell's equations</subject><subject>Microwaves</subject><subject>Permissible error</subject><subject>Physics</subject><subject>Real time</subject><subject>reduced basis method (RBM)</subject><subject>Reduced order systems</subject><subject>Stability analysis</subject><subject>Thermal stability</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLxDAQgIMouD5-gHgJiOila9I0r6Mu6wNcBK3nMG2nGum22rQ-_r1ZdvHgaRjmm9dHyBFnU86ZvcgXeT5NGRfTNJWGK71FJlxKnVil2TaZMMZNYjPDdsleCG8xzSQzE_J0DWGg809oRhh819KuprlfYnIL_bJrfUkX8P2FTXMW6PxjzQT6HHz7QodXpI9YjSVW9AqCD3SBw2tXHZCdGpqAh5u4T56v5_nsNrl_uLmbXd4npZBqSBBtJlAU1tZSKG2g5qYoFAiAQklpoDCFSrnhqBF4pWRalSamNv4H2gixT87Xc9_77mPEMLilD2W8FVrsxuB4xrWxIrMqoif_0Ldu7Nt4neNCyZUOm0aKr6my70LosXbvvV9C_-M4cyvNbqXZrTS7jebYc7qZDKGEpu6hLX34a0x1ZoQRLHLHa84j4l85rraZTsUvNc6ESw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Hess, M. W.</creator><creator>Benner, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method</title><author>Hess, M. W. ; Benner, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-ee943e3b99f53678af18bb6a3aab6558ab8b62181e7ea1d652dc81819581a7833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied classical electromagnetism</topic><topic>Approximation methods</topic><topic>Circuits</topic><topic>Computational modeling</topic><topic>Electromagnetic analysis</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Maxwell equations</topic><topic>Maxwell's equations</topic><topic>Microwaves</topic><topic>Permissible error</topic><topic>Physics</topic><topic>Real time</topic><topic>reduced basis method (RBM)</topic><topic>Reduced order systems</topic><topic>Stability analysis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hess, M. W.</creatorcontrib><creatorcontrib>Benner, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hess, M. W.</au><au>Benner, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>61</volume><issue>6</issue><spage>2265</spage><epage>2274</epage><pages>2265-2274</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>The reduced basis method (RBM) generates low- order models for the solution of parametrized partial differential equations to allow for efficient evaluation in many-query and real-time contexts. We show the theoretical framework in which the RBM is applied to Maxwell's equations and present numerical results for model reduction in frequency domain. Using rigorous error estimators, the RBM achieves low-order models under variation of material parameters and geometry. The RBM reduces model order by a factor of 50 to 100 and reduces compute time by a factor of 200 and more for numerical experiments using standard circuit elements.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2013.2258167</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2013-06, Vol.61 (6), p.2265-2274
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_6509472
source IEEE Electronic Library (IEL)
subjects Applied classical electromagnetism
Approximation methods
Circuits
Computational modeling
Electromagnetic analysis
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
electron and ion optics
Estimators
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical model
Mathematical models
Maxwell equations
Maxwell's equations
Microwaves
Permissible error
Physics
Real time
reduced basis method (RBM)
Reduced order systems
Stability analysis
Thermal stability
title Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Evaluation%20of%20Time-Harmonic%20Maxwell's%20Equations%20Using%20the%20Reduced%20Basis%20Method&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Hess,%20M.%20W.&rft.date=2013-06-01&rft.volume=61&rft.issue=6&rft.spage=2265&rft.epage=2274&rft.pages=2265-2274&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2013.2258167&rft_dat=%3Cproquest_RIE%3E2988664661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365001492&rft_id=info:pmid/&rft_ieee_id=6509472&rfr_iscdi=true