Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method
The reduced basis method (RBM) generates low- order models for the solution of parametrized partial differential equations to allow for efficient evaluation in many-query and real-time contexts. We show the theoretical framework in which the RBM is applied to Maxwell's equations and present num...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2013-06, Vol.61 (6), p.2265-2274 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2274 |
---|---|
container_issue | 6 |
container_start_page | 2265 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 61 |
creator | Hess, M. W. Benner, P. |
description | The reduced basis method (RBM) generates low- order models for the solution of parametrized partial differential equations to allow for efficient evaluation in many-query and real-time contexts. We show the theoretical framework in which the RBM is applied to Maxwell's equations and present numerical results for model reduction in frequency domain. Using rigorous error estimators, the RBM achieves low-order models under variation of material parameters and geometry. The RBM reduces model order by a factor of 50 to 100 and reduces compute time by a factor of 200 and more for numerical experiments using standard circuit elements. |
doi_str_mv | 10.1109/TMTT.2013.2258167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6509472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6509472</ieee_id><sourcerecordid>2988664661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-ee943e3b99f53678af18bb6a3aab6558ab8b62181e7ea1d652dc81819581a7833</originalsourceid><addsrcrecordid>eNpdkEtLxDAQgIMouD5-gHgJiOila9I0r6Mu6wNcBK3nMG2nGum22rQ-_r1ZdvHgaRjmm9dHyBFnU86ZvcgXeT5NGRfTNJWGK71FJlxKnVil2TaZMMZNYjPDdsleCG8xzSQzE_J0DWGg809oRhh819KuprlfYnIL_bJrfUkX8P2FTXMW6PxjzQT6HHz7QodXpI9YjSVW9AqCD3SBw2tXHZCdGpqAh5u4T56v5_nsNrl_uLmbXd4npZBqSBBtJlAU1tZSKG2g5qYoFAiAQklpoDCFSrnhqBF4pWRalSamNv4H2gixT87Xc9_77mPEMLilD2W8FVrsxuB4xrWxIrMqoif_0Ldu7Nt4neNCyZUOm0aKr6my70LosXbvvV9C_-M4cyvNbqXZrTS7jebYc7qZDKGEpu6hLX34a0x1ZoQRLHLHa84j4l85rraZTsUvNc6ESw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365001492</pqid></control><display><type>article</type><title>Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method</title><source>IEEE Electronic Library (IEL)</source><creator>Hess, M. W. ; Benner, P.</creator><creatorcontrib>Hess, M. W. ; Benner, P.</creatorcontrib><description>The reduced basis method (RBM) generates low- order models for the solution of parametrized partial differential equations to allow for efficient evaluation in many-query and real-time contexts. We show the theoretical framework in which the RBM is applied to Maxwell's equations and present numerical results for model reduction in frequency domain. Using rigorous error estimators, the RBM achieves low-order models under variation of material parameters and geometry. The RBM reduces model order by a factor of 50 to 100 and reduces compute time by a factor of 200 and more for numerical experiments using standard circuit elements.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2013.2258167</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Approximation methods ; Circuits ; Computational modeling ; Electromagnetic analysis ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Estimators ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical model ; Mathematical models ; Maxwell equations ; Maxwell's equations ; Microwaves ; Permissible error ; Physics ; Real time ; reduced basis method (RBM) ; Reduced order systems ; Stability analysis ; Thermal stability</subject><ispartof>IEEE transactions on microwave theory and techniques, 2013-06, Vol.61 (6), p.2265-2274</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-ee943e3b99f53678af18bb6a3aab6558ab8b62181e7ea1d652dc81819581a7833</citedby><cites>FETCH-LOGICAL-c356t-ee943e3b99f53678af18bb6a3aab6558ab8b62181e7ea1d652dc81819581a7833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6509472$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6509472$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27483830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hess, M. W.</creatorcontrib><creatorcontrib>Benner, P.</creatorcontrib><title>Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>The reduced basis method (RBM) generates low- order models for the solution of parametrized partial differential equations to allow for efficient evaluation in many-query and real-time contexts. We show the theoretical framework in which the RBM is applied to Maxwell's equations and present numerical results for model reduction in frequency domain. Using rigorous error estimators, the RBM achieves low-order models under variation of material parameters and geometry. The RBM reduces model order by a factor of 50 to 100 and reduces compute time by a factor of 200 and more for numerical experiments using standard circuit elements.</description><subject>Applied classical electromagnetism</subject><subject>Approximation methods</subject><subject>Circuits</subject><subject>Computational modeling</subject><subject>Electromagnetic analysis</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Maxwell equations</subject><subject>Maxwell's equations</subject><subject>Microwaves</subject><subject>Permissible error</subject><subject>Physics</subject><subject>Real time</subject><subject>reduced basis method (RBM)</subject><subject>Reduced order systems</subject><subject>Stability analysis</subject><subject>Thermal stability</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLxDAQgIMouD5-gHgJiOila9I0r6Mu6wNcBK3nMG2nGum22rQ-_r1ZdvHgaRjmm9dHyBFnU86ZvcgXeT5NGRfTNJWGK71FJlxKnVil2TaZMMZNYjPDdsleCG8xzSQzE_J0DWGg809oRhh819KuprlfYnIL_bJrfUkX8P2FTXMW6PxjzQT6HHz7QodXpI9YjSVW9AqCD3SBw2tXHZCdGpqAh5u4T56v5_nsNrl_uLmbXd4npZBqSBBtJlAU1tZSKG2g5qYoFAiAQklpoDCFSrnhqBF4pWRalSamNv4H2gixT87Xc9_77mPEMLilD2W8FVrsxuB4xrWxIrMqoif_0Ldu7Nt4neNCyZUOm0aKr6my70LosXbvvV9C_-M4cyvNbqXZrTS7jebYc7qZDKGEpu6hLX34a0x1ZoQRLHLHa84j4l85rraZTsUvNc6ESw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Hess, M. W.</creator><creator>Benner, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method</title><author>Hess, M. W. ; Benner, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-ee943e3b99f53678af18bb6a3aab6558ab8b62181e7ea1d652dc81819581a7833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied classical electromagnetism</topic><topic>Approximation methods</topic><topic>Circuits</topic><topic>Computational modeling</topic><topic>Electromagnetic analysis</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Maxwell equations</topic><topic>Maxwell's equations</topic><topic>Microwaves</topic><topic>Permissible error</topic><topic>Physics</topic><topic>Real time</topic><topic>reduced basis method (RBM)</topic><topic>Reduced order systems</topic><topic>Stability analysis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hess, M. W.</creatorcontrib><creatorcontrib>Benner, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hess, M. W.</au><au>Benner, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>61</volume><issue>6</issue><spage>2265</spage><epage>2274</epage><pages>2265-2274</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>The reduced basis method (RBM) generates low- order models for the solution of parametrized partial differential equations to allow for efficient evaluation in many-query and real-time contexts. We show the theoretical framework in which the RBM is applied to Maxwell's equations and present numerical results for model reduction in frequency domain. Using rigorous error estimators, the RBM achieves low-order models under variation of material parameters and geometry. The RBM reduces model order by a factor of 50 to 100 and reduces compute time by a factor of 200 and more for numerical experiments using standard circuit elements.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMTT.2013.2258167</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2013-06, Vol.61 (6), p.2265-2274 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_ieee_primary_6509472 |
source | IEEE Electronic Library (IEL) |
subjects | Applied classical electromagnetism Approximation methods Circuits Computational modeling Electromagnetic analysis Electromagnetic wave propagation, radiowave propagation Electromagnetism electron and ion optics Estimators Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical model Mathematical models Maxwell equations Maxwell's equations Microwaves Permissible error Physics Real time reduced basis method (RBM) Reduced order systems Stability analysis Thermal stability |
title | Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Evaluation%20of%20Time-Harmonic%20Maxwell's%20Equations%20Using%20the%20Reduced%20Basis%20Method&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Hess,%20M.%20W.&rft.date=2013-06-01&rft.volume=61&rft.issue=6&rft.spage=2265&rft.epage=2274&rft.pages=2265-2274&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2013.2258167&rft_dat=%3Cproquest_RIE%3E2988664661%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365001492&rft_id=info:pmid/&rft_ieee_id=6509472&rfr_iscdi=true |