A semantic similarity approach based on web resources
The ability to accurately judge the semantic similarity is important in various tasks on the web such as extracting the relation, document clustering, and automatic metadata extraction. An empirical method is proposed to provide a semantic wise search that uses in one hand, a technical English dicti...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 231 |
---|---|
container_issue | |
container_start_page | 226 |
container_title | |
container_volume | |
creator | Karthiga, M. Kalaivaani, P. C. D. Sankarananth, S. |
description | The ability to accurately judge the semantic similarity is important in various tasks on the web such as extracting the relation, document clustering, and automatic metadata extraction. An empirical method is proposed to provide a semantic wise search that uses in one hand, a technical English dictionary and on the other hand, a page count based metric and a text snippet based metric retrieved from a web search engine for two words. To identify the numerous semantic relations between the words, a novel pattern extraction algorithm and a pattern clustering algorithm is proposed. The page counts based co-occurrence measures and lexical pattern clusters extracted from snippets is learned using support vector machines. Integrate the page count, text snippet and dictionary based metric to accurately measure the semantic similarity search compared to normal search. |
doi_str_mv | 10.1109/ICICES.2013.6508365 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6508365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6508365</ieee_id><sourcerecordid>6508365</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-80f1c4d928f4286607125cbc51322cf284c64abc7a6c3530fff7859df4d8e13b3</originalsourceid><addsrcrecordid>eNo1j81KxDAURiMiqGOfYDZ5gdbc_N4uhzJqYcCFCu6GJE0wMp2WpCLz9gqOq4-zOAc-QtbAGgDW3vdd321fGs5ANFoxFFpdkFuQ2ghlEN8vSdUa_GfdXpOqlE_G2K-tOeINURtawmiPS_K0pDEdbE7Lidp5zpP1H9TZEgY6Hel3cDSHMn1lH8oduYr2UEJ13hV5e9i-dk_17vmx7za7OoFRS40sgpdDyzFKjlozA1x55xUIzn3kKL2W1nljtRdKsBijQdUOUQ4YQDixIuu_bgoh7OecRptP-_NT8QOvBUbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A semantic similarity approach based on web resources</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karthiga, M. ; Kalaivaani, P. C. D. ; Sankarananth, S.</creator><creatorcontrib>Karthiga, M. ; Kalaivaani, P. C. D. ; Sankarananth, S.</creatorcontrib><description>The ability to accurately judge the semantic similarity is important in various tasks on the web such as extracting the relation, document clustering, and automatic metadata extraction. An empirical method is proposed to provide a semantic wise search that uses in one hand, a technical English dictionary and on the other hand, a page count based metric and a text snippet based metric retrieved from a web search engine for two words. To identify the numerous semantic relations between the words, a novel pattern extraction algorithm and a pattern clustering algorithm is proposed. The page counts based co-occurrence measures and lexical pattern clusters extracted from snippets is learned using support vector machines. Integrate the page count, text snippet and dictionary based metric to accurately measure the semantic similarity search compared to normal search.</description><identifier>ISBN: 9781467357869</identifier><identifier>ISBN: 1467357863</identifier><identifier>EISBN: 146735788X</identifier><identifier>EISBN: 9781467357883</identifier><identifier>EISBN: 9781467357876</identifier><identifier>EISBN: 1467357871</identifier><identifier>DOI: 10.1109/ICICES.2013.6508365</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dictionaries ; Engines ; information extraction ; Measurement ; natural language processing ; Search engines ; Semantics ; snippet ; user generated content ; Vectors ; Web search</subject><ispartof>2013 International Conference on Information Communication and Embedded Systems (ICICES), 2013, p.226-231</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6508365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6508365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karthiga, M.</creatorcontrib><creatorcontrib>Kalaivaani, P. C. D.</creatorcontrib><creatorcontrib>Sankarananth, S.</creatorcontrib><title>A semantic similarity approach based on web resources</title><title>2013 International Conference on Information Communication and Embedded Systems (ICICES)</title><addtitle>ICICES</addtitle><description>The ability to accurately judge the semantic similarity is important in various tasks on the web such as extracting the relation, document clustering, and automatic metadata extraction. An empirical method is proposed to provide a semantic wise search that uses in one hand, a technical English dictionary and on the other hand, a page count based metric and a text snippet based metric retrieved from a web search engine for two words. To identify the numerous semantic relations between the words, a novel pattern extraction algorithm and a pattern clustering algorithm is proposed. The page counts based co-occurrence measures and lexical pattern clusters extracted from snippets is learned using support vector machines. Integrate the page count, text snippet and dictionary based metric to accurately measure the semantic similarity search compared to normal search.</description><subject>Dictionaries</subject><subject>Engines</subject><subject>information extraction</subject><subject>Measurement</subject><subject>natural language processing</subject><subject>Search engines</subject><subject>Semantics</subject><subject>snippet</subject><subject>user generated content</subject><subject>Vectors</subject><subject>Web search</subject><isbn>9781467357869</isbn><isbn>1467357863</isbn><isbn>146735788X</isbn><isbn>9781467357883</isbn><isbn>9781467357876</isbn><isbn>1467357871</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81KxDAURiMiqGOfYDZ5gdbc_N4uhzJqYcCFCu6GJE0wMp2WpCLz9gqOq4-zOAc-QtbAGgDW3vdd321fGs5ANFoxFFpdkFuQ2ghlEN8vSdUa_GfdXpOqlE_G2K-tOeINURtawmiPS_K0pDEdbE7Lidp5zpP1H9TZEgY6Hel3cDSHMn1lH8oduYr2UEJ13hV5e9i-dk_17vmx7za7OoFRS40sgpdDyzFKjlozA1x55xUIzn3kKL2W1nljtRdKsBijQdUOUQ4YQDixIuu_bgoh7OecRptP-_NT8QOvBUbg</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Karthiga, M.</creator><creator>Kalaivaani, P. C. D.</creator><creator>Sankarananth, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201302</creationdate><title>A semantic similarity approach based on web resources</title><author>Karthiga, M. ; Kalaivaani, P. C. D. ; Sankarananth, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-80f1c4d928f4286607125cbc51322cf284c64abc7a6c3530fff7859df4d8e13b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dictionaries</topic><topic>Engines</topic><topic>information extraction</topic><topic>Measurement</topic><topic>natural language processing</topic><topic>Search engines</topic><topic>Semantics</topic><topic>snippet</topic><topic>user generated content</topic><topic>Vectors</topic><topic>Web search</topic><toplevel>online_resources</toplevel><creatorcontrib>Karthiga, M.</creatorcontrib><creatorcontrib>Kalaivaani, P. C. D.</creatorcontrib><creatorcontrib>Sankarananth, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karthiga, M.</au><au>Kalaivaani, P. C. D.</au><au>Sankarananth, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A semantic similarity approach based on web resources</atitle><btitle>2013 International Conference on Information Communication and Embedded Systems (ICICES)</btitle><stitle>ICICES</stitle><date>2013-02</date><risdate>2013</risdate><spage>226</spage><epage>231</epage><pages>226-231</pages><isbn>9781467357869</isbn><isbn>1467357863</isbn><eisbn>146735788X</eisbn><eisbn>9781467357883</eisbn><eisbn>9781467357876</eisbn><eisbn>1467357871</eisbn><abstract>The ability to accurately judge the semantic similarity is important in various tasks on the web such as extracting the relation, document clustering, and automatic metadata extraction. An empirical method is proposed to provide a semantic wise search that uses in one hand, a technical English dictionary and on the other hand, a page count based metric and a text snippet based metric retrieved from a web search engine for two words. To identify the numerous semantic relations between the words, a novel pattern extraction algorithm and a pattern clustering algorithm is proposed. The page counts based co-occurrence measures and lexical pattern clusters extracted from snippets is learned using support vector machines. Integrate the page count, text snippet and dictionary based metric to accurately measure the semantic similarity search compared to normal search.</abstract><pub>IEEE</pub><doi>10.1109/ICICES.2013.6508365</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467357869 |
ispartof | 2013 International Conference on Information Communication and Embedded Systems (ICICES), 2013, p.226-231 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6508365 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Dictionaries Engines information extraction Measurement natural language processing Search engines Semantics snippet user generated content Vectors Web search |
title | A semantic similarity approach based on web resources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20semantic%20similarity%20approach%20based%20on%20web%20resources&rft.btitle=2013%20International%20Conference%20on%20Information%20Communication%20and%20Embedded%20Systems%20(ICICES)&rft.au=Karthiga,%20M.&rft.date=2013-02&rft.spage=226&rft.epage=231&rft.pages=226-231&rft.isbn=9781467357869&rft.isbn_list=1467357863&rft_id=info:doi/10.1109/ICICES.2013.6508365&rft_dat=%3Cieee_6IE%3E6508365%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146735788X&rft.eisbn_list=9781467357883&rft.eisbn_list=9781467357876&rft.eisbn_list=1467357871&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6508365&rfr_iscdi=true |