A semantic similarity approach based on web resources

The ability to accurately judge the semantic similarity is important in various tasks on the web such as extracting the relation, document clustering, and automatic metadata extraction. An empirical method is proposed to provide a semantic wise search that uses in one hand, a technical English dicti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karthiga, M., Kalaivaani, P. C. D., Sankarananth, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue
container_start_page 226
container_title
container_volume
creator Karthiga, M.
Kalaivaani, P. C. D.
Sankarananth, S.
description The ability to accurately judge the semantic similarity is important in various tasks on the web such as extracting the relation, document clustering, and automatic metadata extraction. An empirical method is proposed to provide a semantic wise search that uses in one hand, a technical English dictionary and on the other hand, a page count based metric and a text snippet based metric retrieved from a web search engine for two words. To identify the numerous semantic relations between the words, a novel pattern extraction algorithm and a pattern clustering algorithm is proposed. The page counts based co-occurrence measures and lexical pattern clusters extracted from snippets is learned using support vector machines. Integrate the page count, text snippet and dictionary based metric to accurately measure the semantic similarity search compared to normal search.
doi_str_mv 10.1109/ICICES.2013.6508365
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6508365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6508365</ieee_id><sourcerecordid>6508365</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-80f1c4d928f4286607125cbc51322cf284c64abc7a6c3530fff7859df4d8e13b3</originalsourceid><addsrcrecordid>eNo1j81KxDAURiMiqGOfYDZ5gdbc_N4uhzJqYcCFCu6GJE0wMp2WpCLz9gqOq4-zOAc-QtbAGgDW3vdd321fGs5ANFoxFFpdkFuQ2ghlEN8vSdUa_GfdXpOqlE_G2K-tOeINURtawmiPS_K0pDEdbE7Lidp5zpP1H9TZEgY6Hel3cDSHMn1lH8oduYr2UEJ13hV5e9i-dk_17vmx7za7OoFRS40sgpdDyzFKjlozA1x55xUIzn3kKL2W1nljtRdKsBijQdUOUQ4YQDixIuu_bgoh7OecRptP-_NT8QOvBUbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A semantic similarity approach based on web resources</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karthiga, M. ; Kalaivaani, P. C. D. ; Sankarananth, S.</creator><creatorcontrib>Karthiga, M. ; Kalaivaani, P. C. D. ; Sankarananth, S.</creatorcontrib><description>The ability to accurately judge the semantic similarity is important in various tasks on the web such as extracting the relation, document clustering, and automatic metadata extraction. An empirical method is proposed to provide a semantic wise search that uses in one hand, a technical English dictionary and on the other hand, a page count based metric and a text snippet based metric retrieved from a web search engine for two words. To identify the numerous semantic relations between the words, a novel pattern extraction algorithm and a pattern clustering algorithm is proposed. The page counts based co-occurrence measures and lexical pattern clusters extracted from snippets is learned using support vector machines. Integrate the page count, text snippet and dictionary based metric to accurately measure the semantic similarity search compared to normal search.</description><identifier>ISBN: 9781467357869</identifier><identifier>ISBN: 1467357863</identifier><identifier>EISBN: 146735788X</identifier><identifier>EISBN: 9781467357883</identifier><identifier>EISBN: 9781467357876</identifier><identifier>EISBN: 1467357871</identifier><identifier>DOI: 10.1109/ICICES.2013.6508365</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dictionaries ; Engines ; information extraction ; Measurement ; natural language processing ; Search engines ; Semantics ; snippet ; user generated content ; Vectors ; Web search</subject><ispartof>2013 International Conference on Information Communication and Embedded Systems (ICICES), 2013, p.226-231</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6508365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6508365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karthiga, M.</creatorcontrib><creatorcontrib>Kalaivaani, P. C. D.</creatorcontrib><creatorcontrib>Sankarananth, S.</creatorcontrib><title>A semantic similarity approach based on web resources</title><title>2013 International Conference on Information Communication and Embedded Systems (ICICES)</title><addtitle>ICICES</addtitle><description>The ability to accurately judge the semantic similarity is important in various tasks on the web such as extracting the relation, document clustering, and automatic metadata extraction. An empirical method is proposed to provide a semantic wise search that uses in one hand, a technical English dictionary and on the other hand, a page count based metric and a text snippet based metric retrieved from a web search engine for two words. To identify the numerous semantic relations between the words, a novel pattern extraction algorithm and a pattern clustering algorithm is proposed. The page counts based co-occurrence measures and lexical pattern clusters extracted from snippets is learned using support vector machines. Integrate the page count, text snippet and dictionary based metric to accurately measure the semantic similarity search compared to normal search.</description><subject>Dictionaries</subject><subject>Engines</subject><subject>information extraction</subject><subject>Measurement</subject><subject>natural language processing</subject><subject>Search engines</subject><subject>Semantics</subject><subject>snippet</subject><subject>user generated content</subject><subject>Vectors</subject><subject>Web search</subject><isbn>9781467357869</isbn><isbn>1467357863</isbn><isbn>146735788X</isbn><isbn>9781467357883</isbn><isbn>9781467357876</isbn><isbn>1467357871</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81KxDAURiMiqGOfYDZ5gdbc_N4uhzJqYcCFCu6GJE0wMp2WpCLz9gqOq4-zOAc-QtbAGgDW3vdd321fGs5ANFoxFFpdkFuQ2ghlEN8vSdUa_GfdXpOqlE_G2K-tOeINURtawmiPS_K0pDEdbE7Lidp5zpP1H9TZEgY6Hel3cDSHMn1lH8oduYr2UEJ13hV5e9i-dk_17vmx7za7OoFRS40sgpdDyzFKjlozA1x55xUIzn3kKL2W1nljtRdKsBijQdUOUQ4YQDixIuu_bgoh7OecRptP-_NT8QOvBUbg</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Karthiga, M.</creator><creator>Kalaivaani, P. C. D.</creator><creator>Sankarananth, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201302</creationdate><title>A semantic similarity approach based on web resources</title><author>Karthiga, M. ; Kalaivaani, P. C. D. ; Sankarananth, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-80f1c4d928f4286607125cbc51322cf284c64abc7a6c3530fff7859df4d8e13b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dictionaries</topic><topic>Engines</topic><topic>information extraction</topic><topic>Measurement</topic><topic>natural language processing</topic><topic>Search engines</topic><topic>Semantics</topic><topic>snippet</topic><topic>user generated content</topic><topic>Vectors</topic><topic>Web search</topic><toplevel>online_resources</toplevel><creatorcontrib>Karthiga, M.</creatorcontrib><creatorcontrib>Kalaivaani, P. C. D.</creatorcontrib><creatorcontrib>Sankarananth, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karthiga, M.</au><au>Kalaivaani, P. C. D.</au><au>Sankarananth, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A semantic similarity approach based on web resources</atitle><btitle>2013 International Conference on Information Communication and Embedded Systems (ICICES)</btitle><stitle>ICICES</stitle><date>2013-02</date><risdate>2013</risdate><spage>226</spage><epage>231</epage><pages>226-231</pages><isbn>9781467357869</isbn><isbn>1467357863</isbn><eisbn>146735788X</eisbn><eisbn>9781467357883</eisbn><eisbn>9781467357876</eisbn><eisbn>1467357871</eisbn><abstract>The ability to accurately judge the semantic similarity is important in various tasks on the web such as extracting the relation, document clustering, and automatic metadata extraction. An empirical method is proposed to provide a semantic wise search that uses in one hand, a technical English dictionary and on the other hand, a page count based metric and a text snippet based metric retrieved from a web search engine for two words. To identify the numerous semantic relations between the words, a novel pattern extraction algorithm and a pattern clustering algorithm is proposed. The page counts based co-occurrence measures and lexical pattern clusters extracted from snippets is learned using support vector machines. Integrate the page count, text snippet and dictionary based metric to accurately measure the semantic similarity search compared to normal search.</abstract><pub>IEEE</pub><doi>10.1109/ICICES.2013.6508365</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467357869
ispartof 2013 International Conference on Information Communication and Embedded Systems (ICICES), 2013, p.226-231
issn
language eng
recordid cdi_ieee_primary_6508365
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Dictionaries
Engines
information extraction
Measurement
natural language processing
Search engines
Semantics
snippet
user generated content
Vectors
Web search
title A semantic similarity approach based on web resources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20semantic%20similarity%20approach%20based%20on%20web%20resources&rft.btitle=2013%20International%20Conference%20on%20Information%20Communication%20and%20Embedded%20Systems%20(ICICES)&rft.au=Karthiga,%20M.&rft.date=2013-02&rft.spage=226&rft.epage=231&rft.pages=226-231&rft.isbn=9781467357869&rft.isbn_list=1467357863&rft_id=info:doi/10.1109/ICICES.2013.6508365&rft_dat=%3Cieee_6IE%3E6508365%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146735788X&rft.eisbn_list=9781467357883&rft.eisbn_list=9781467357876&rft.eisbn_list=1467357871&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6508365&rfr_iscdi=true