Balanced neighborhood aware clustering technique in Wireless Sensor Networks

Clustering forms the basis of a well structured Wireless Sensor Networks. Formation of efficient clusters leads to longer lifetime of the sensor networks. So we tend to optimize the initial clustering process. In this paper we have proposed Mean neighbor clustering algorithm that evenly distributes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bhowmik, S., Sen, A., Bhattacharjee, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Bhowmik, S.
Sen, A.
Bhattacharjee, S.
description Clustering forms the basis of a well structured Wireless Sensor Networks. Formation of efficient clusters leads to longer lifetime of the sensor networks. So we tend to optimize the initial clustering process. In this paper we have proposed Mean neighbor clustering algorithm that evenly distributes the nodes around the clusters and form well balanced clusters in the system. The proposed Mean neighbor clustering protocol uses the local neighborhood information to form balanced clusters in sensor networks. The proposed method is also compared with various existing clustering protocols in sensor networks. Comparison is done based on parameters like cluster number, average cluster, cluster range, circularity and hop distance. Simulations show that our proposed algorithm performs better than other neighborhood aware clustering techniques.
doi_str_mv 10.1109/ICPCES.2012.6508069
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6508069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6508069</ieee_id><sourcerecordid>6508069</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1d69696caa2ab80cd4d7c40f1afc4f4bf1416eca68ed2a1c5ac681e1218e1db43</originalsourceid><addsrcrecordid>eNo1kMFOwzAQRI0QElDyBb34BxK8iePYR4gKVKoAqSCO1cbeNIaQgJ2q4u-pRNEcRu8w7zCMzUFkAMJcL-vnerHOcgF5pkqhhTInLDGVBqmqAoQ05pRd_kOlzlkS47sQ4rBW2sAFW91ij4Mlxwfy264ZQzeOjuMeA3Hb7-JEwQ9bPpHtBv-9I-4H_uYD9RQjX9MQx8AfadqP4SNesbMW-0jJsWfs9W7xUj-kq6f7ZX2zSj1U5ZSCU-YQi5hjo4V10lVWihawtbKVTQsSFFlUmlyOYEu0SgNBDprANbKYsfmf1xPR5iv4Tww_m-MBxS9E-lEG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Balanced neighborhood aware clustering technique in Wireless Sensor Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhowmik, S. ; Sen, A. ; Bhattacharjee, S.</creator><creatorcontrib>Bhowmik, S. ; Sen, A. ; Bhattacharjee, S.</creatorcontrib><description>Clustering forms the basis of a well structured Wireless Sensor Networks. Formation of efficient clusters leads to longer lifetime of the sensor networks. So we tend to optimize the initial clustering process. In this paper we have proposed Mean neighbor clustering algorithm that evenly distributes the nodes around the clusters and form well balanced clusters in the system. The proposed Mean neighbor clustering protocol uses the local neighborhood information to form balanced clusters in sensor networks. The proposed method is also compared with various existing clustering protocols in sensor networks. Comparison is done based on parameters like cluster number, average cluster, cluster range, circularity and hop distance. Simulations show that our proposed algorithm performs better than other neighborhood aware clustering techniques.</description><identifier>ISBN: 1467310476</identifier><identifier>ISBN: 9781467310475</identifier><identifier>EISBN: 9781467310499</identifier><identifier>EISBN: 1467310484</identifier><identifier>EISBN: 9781467310482</identifier><identifier>EISBN: 1467310492</identifier><identifier>DOI: 10.1109/ICPCES.2012.6508069</identifier><language>eng</language><publisher>IEEE</publisher><subject>average cluster ; balanced clustering ; circularity ; cluster number ; cluster range ; clustering ; hop distance ; mean neighbor clustering ; neighborhood aware clustering ; Wireless Sensor Networks</subject><ispartof>2012 2nd International Conference on Power, Control and Embedded Systems, 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6508069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6508069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhowmik, S.</creatorcontrib><creatorcontrib>Sen, A.</creatorcontrib><creatorcontrib>Bhattacharjee, S.</creatorcontrib><title>Balanced neighborhood aware clustering technique in Wireless Sensor Networks</title><title>2012 2nd International Conference on Power, Control and Embedded Systems</title><addtitle>ICPCES</addtitle><description>Clustering forms the basis of a well structured Wireless Sensor Networks. Formation of efficient clusters leads to longer lifetime of the sensor networks. So we tend to optimize the initial clustering process. In this paper we have proposed Mean neighbor clustering algorithm that evenly distributes the nodes around the clusters and form well balanced clusters in the system. The proposed Mean neighbor clustering protocol uses the local neighborhood information to form balanced clusters in sensor networks. The proposed method is also compared with various existing clustering protocols in sensor networks. Comparison is done based on parameters like cluster number, average cluster, cluster range, circularity and hop distance. Simulations show that our proposed algorithm performs better than other neighborhood aware clustering techniques.</description><subject>average cluster</subject><subject>balanced clustering</subject><subject>circularity</subject><subject>cluster number</subject><subject>cluster range</subject><subject>clustering</subject><subject>hop distance</subject><subject>mean neighbor clustering</subject><subject>neighborhood aware clustering</subject><subject>Wireless Sensor Networks</subject><isbn>1467310476</isbn><isbn>9781467310475</isbn><isbn>9781467310499</isbn><isbn>1467310484</isbn><isbn>9781467310482</isbn><isbn>1467310492</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMFOwzAQRI0QElDyBb34BxK8iePYR4gKVKoAqSCO1cbeNIaQgJ2q4u-pRNEcRu8w7zCMzUFkAMJcL-vnerHOcgF5pkqhhTInLDGVBqmqAoQ05pRd_kOlzlkS47sQ4rBW2sAFW91ij4Mlxwfy264ZQzeOjuMeA3Hb7-JEwQ9bPpHtBv-9I-4H_uYD9RQjX9MQx8AfadqP4SNesbMW-0jJsWfs9W7xUj-kq6f7ZX2zSj1U5ZSCU-YQi5hjo4V10lVWihawtbKVTQsSFFlUmlyOYEu0SgNBDprANbKYsfmf1xPR5iv4Tww_m-MBxS9E-lEG</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Bhowmik, S.</creator><creator>Sen, A.</creator><creator>Bhattacharjee, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Balanced neighborhood aware clustering technique in Wireless Sensor Networks</title><author>Bhowmik, S. ; Sen, A. ; Bhattacharjee, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1d69696caa2ab80cd4d7c40f1afc4f4bf1416eca68ed2a1c5ac681e1218e1db43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>average cluster</topic><topic>balanced clustering</topic><topic>circularity</topic><topic>cluster number</topic><topic>cluster range</topic><topic>clustering</topic><topic>hop distance</topic><topic>mean neighbor clustering</topic><topic>neighborhood aware clustering</topic><topic>Wireless Sensor Networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhowmik, S.</creatorcontrib><creatorcontrib>Sen, A.</creatorcontrib><creatorcontrib>Bhattacharjee, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhowmik, S.</au><au>Sen, A.</au><au>Bhattacharjee, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Balanced neighborhood aware clustering technique in Wireless Sensor Networks</atitle><btitle>2012 2nd International Conference on Power, Control and Embedded Systems</btitle><stitle>ICPCES</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1467310476</isbn><isbn>9781467310475</isbn><eisbn>9781467310499</eisbn><eisbn>1467310484</eisbn><eisbn>9781467310482</eisbn><eisbn>1467310492</eisbn><abstract>Clustering forms the basis of a well structured Wireless Sensor Networks. Formation of efficient clusters leads to longer lifetime of the sensor networks. So we tend to optimize the initial clustering process. In this paper we have proposed Mean neighbor clustering algorithm that evenly distributes the nodes around the clusters and form well balanced clusters in the system. The proposed Mean neighbor clustering protocol uses the local neighborhood information to form balanced clusters in sensor networks. The proposed method is also compared with various existing clustering protocols in sensor networks. Comparison is done based on parameters like cluster number, average cluster, cluster range, circularity and hop distance. Simulations show that our proposed algorithm performs better than other neighborhood aware clustering techniques.</abstract><pub>IEEE</pub><doi>10.1109/ICPCES.2012.6508069</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467310476
ispartof 2012 2nd International Conference on Power, Control and Embedded Systems, 2012, p.1-5
issn
language eng
recordid cdi_ieee_primary_6508069
source IEEE Electronic Library (IEL) Conference Proceedings
subjects average cluster
balanced clustering
circularity
cluster number
cluster range
clustering
hop distance
mean neighbor clustering
neighborhood aware clustering
Wireless Sensor Networks
title Balanced neighborhood aware clustering technique in Wireless Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Balanced%20neighborhood%20aware%20clustering%20technique%20in%20Wireless%20Sensor%20Networks&rft.btitle=2012%202nd%20International%20Conference%20on%20Power,%20Control%20and%20Embedded%20Systems&rft.au=Bhowmik,%20S.&rft.date=2012-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1467310476&rft.isbn_list=9781467310475&rft_id=info:doi/10.1109/ICPCES.2012.6508069&rft_dat=%3Cieee_6IE%3E6508069%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467310499&rft.eisbn_list=1467310484&rft.eisbn_list=9781467310482&rft.eisbn_list=1467310492&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6508069&rfr_iscdi=true