Evaluating a new classification method using PCA to human activity recognition

The ability to recognize human activities from sensed information is very important for ubiquitous computing applications using smart identification technologies. This paper addresses a new discriminative supervised method combining the classical Principal Components Analysis with the correlation cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abidine, M. B., Fergani, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Abidine, M. B.
Fergani, B.
description The ability to recognize human activities from sensed information is very important for ubiquitous computing applications using smart identification technologies. This paper addresses a new discriminative supervised method combining the classical Principal Components Analysis with the correlation criterion for performing activity recognition in a smart home. We conduct several experiments, demonstrate the achievement of our method and show its promising results using real world dataset.
doi_str_mv 10.1109/ICCMA.2013.6506158
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6506158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6506158</ieee_id><sourcerecordid>6506158</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-33f12b05a46ba7f993612df6d9d54966a17eaeb93aa163cc1d02bc6b499c35c03</originalsourceid><addsrcrecordid>eNo1kMtOwzAURI0QElDyA7DxDyT42rFdL6Oo0ErlsYB1deM4rVEeKHaK-ve0oqxGMzoziyHkHlgGwMzjqixfiowzEJmSTIGcX5DE6DnkSgvJIdeX5PbfCHVNkhC-GGPHsuLc3JDXxR7bCaPvtxRp736obTEE33h7DIeedi7uhppO4US8lwWNA91NHfYUbfR7Hw90dHbY9v6E35GrBtvgkrPOyOfT4qNcpuu351VZrFMPWsZUiAZ4xSTmqkLdGCMU8LpRtallbpRC0A5dZQQiKGEt1IxXVlW5MVZIy8SMPPzteufc5nv0HY6HzfkC8Qvxp0_1</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluating a new classification method using PCA to human activity recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abidine, M. B. ; Fergani, B.</creator><creatorcontrib>Abidine, M. B. ; Fergani, B.</creatorcontrib><description>The ability to recognize human activities from sensed information is very important for ubiquitous computing applications using smart identification technologies. This paper addresses a new discriminative supervised method combining the classical Principal Components Analysis with the correlation criterion for performing activity recognition in a smart home. We conduct several experiments, demonstrate the achievement of our method and show its promising results using real world dataset.</description><identifier>ISBN: 1467352136</identifier><identifier>ISBN: 9781467352130</identifier><identifier>EISBN: 9781467352147</identifier><identifier>EISBN: 1467352144</identifier><identifier>EISBN: 9781467352123</identifier><identifier>EISBN: 1467352128</identifier><identifier>DOI: 10.1109/ICCMA.2013.6506158</identifier><language>eng</language><publisher>IEEE</publisher><subject>activity recognition ; Correlation ; Hidden Markov models ; Intelligent sensors ; machine learning ; Principal component analysis ; sensors network ; smart home ; Smart homes ; Ubiquitous computing</subject><ispartof>2013 International Conference on Computer Medical Applications (ICCMA), 2013, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6506158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6506158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abidine, M. B.</creatorcontrib><creatorcontrib>Fergani, B.</creatorcontrib><title>Evaluating a new classification method using PCA to human activity recognition</title><title>2013 International Conference on Computer Medical Applications (ICCMA)</title><addtitle>ICCMA</addtitle><description>The ability to recognize human activities from sensed information is very important for ubiquitous computing applications using smart identification technologies. This paper addresses a new discriminative supervised method combining the classical Principal Components Analysis with the correlation criterion for performing activity recognition in a smart home. We conduct several experiments, demonstrate the achievement of our method and show its promising results using real world dataset.</description><subject>activity recognition</subject><subject>Correlation</subject><subject>Hidden Markov models</subject><subject>Intelligent sensors</subject><subject>machine learning</subject><subject>Principal component analysis</subject><subject>sensors network</subject><subject>smart home</subject><subject>Smart homes</subject><subject>Ubiquitous computing</subject><isbn>1467352136</isbn><isbn>9781467352130</isbn><isbn>9781467352147</isbn><isbn>1467352144</isbn><isbn>9781467352123</isbn><isbn>1467352128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURI0QElDyA7DxDyT42rFdL6Oo0ErlsYB1deM4rVEeKHaK-ve0oqxGMzoziyHkHlgGwMzjqixfiowzEJmSTIGcX5DE6DnkSgvJIdeX5PbfCHVNkhC-GGPHsuLc3JDXxR7bCaPvtxRp736obTEE33h7DIeedi7uhppO4US8lwWNA91NHfYUbfR7Hw90dHbY9v6E35GrBtvgkrPOyOfT4qNcpuu351VZrFMPWsZUiAZ4xSTmqkLdGCMU8LpRtallbpRC0A5dZQQiKGEt1IxXVlW5MVZIy8SMPPzteufc5nv0HY6HzfkC8Qvxp0_1</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Abidine, M. B.</creator><creator>Fergani, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201301</creationdate><title>Evaluating a new classification method using PCA to human activity recognition</title><author>Abidine, M. B. ; Fergani, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-33f12b05a46ba7f993612df6d9d54966a17eaeb93aa163cc1d02bc6b499c35c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>activity recognition</topic><topic>Correlation</topic><topic>Hidden Markov models</topic><topic>Intelligent sensors</topic><topic>machine learning</topic><topic>Principal component analysis</topic><topic>sensors network</topic><topic>smart home</topic><topic>Smart homes</topic><topic>Ubiquitous computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Abidine, M. B.</creatorcontrib><creatorcontrib>Fergani, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abidine, M. B.</au><au>Fergani, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluating a new classification method using PCA to human activity recognition</atitle><btitle>2013 International Conference on Computer Medical Applications (ICCMA)</btitle><stitle>ICCMA</stitle><date>2013-01</date><risdate>2013</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>1467352136</isbn><isbn>9781467352130</isbn><eisbn>9781467352147</eisbn><eisbn>1467352144</eisbn><eisbn>9781467352123</eisbn><eisbn>1467352128</eisbn><abstract>The ability to recognize human activities from sensed information is very important for ubiquitous computing applications using smart identification technologies. This paper addresses a new discriminative supervised method combining the classical Principal Components Analysis with the correlation criterion for performing activity recognition in a smart home. We conduct several experiments, demonstrate the achievement of our method and show its promising results using real world dataset.</abstract><pub>IEEE</pub><doi>10.1109/ICCMA.2013.6506158</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467352136
ispartof 2013 International Conference on Computer Medical Applications (ICCMA), 2013, p.1-4
issn
language eng
recordid cdi_ieee_primary_6506158
source IEEE Electronic Library (IEL) Conference Proceedings
subjects activity recognition
Correlation
Hidden Markov models
Intelligent sensors
machine learning
Principal component analysis
sensors network
smart home
Smart homes
Ubiquitous computing
title Evaluating a new classification method using PCA to human activity recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluating%20a%20new%20classification%20method%20using%20PCA%20to%20human%20activity%20recognition&rft.btitle=2013%20International%20Conference%20on%20Computer%20Medical%20Applications%20(ICCMA)&rft.au=Abidine,%20M.%20B.&rft.date=2013-01&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=1467352136&rft.isbn_list=9781467352130&rft_id=info:doi/10.1109/ICCMA.2013.6506158&rft_dat=%3Cieee_6IE%3E6506158%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467352147&rft.eisbn_list=1467352144&rft.eisbn_list=9781467352123&rft.eisbn_list=1467352128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6506158&rfr_iscdi=true