RSS based indoor localization with limited deployment load
One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment load required to construct radio maps through fingerprinting. Several works aimed to employ radio propagation models as alternative to fingerprinting b...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | |
container_start_page | 303 |
container_title | |
container_volume | |
creator | Sorour, S. Lostanlen, Y. Valaee, S. |
description | One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment load required to construct radio maps through fingerprinting. Several works aimed to employ radio propagation models as alternative to fingerprinting but the different sources of inaccuracies in the generation of these models result in high localization errors. In this paper, we propose an indoor localization scheme that can be directly deployed and employed without building a full radio map of the indoor environment. The proposed scheme employs the information from a radio propagation simulator and limited number of calibration measurements to perform direct localization using manifold alignment. For moving users, we exploit the correlation of their reported observations to improve the localization accuracy. The online performance evaluation shows that our algorithm achieves localization errors in the order of 2.5 to 3 m with as low as 15% - 30 % of the complete fingerprinting load. |
doi_str_mv | 10.1109/GLOCOM.2012.6503130 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6503130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6503130</ieee_id><sourcerecordid>6503130</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5eb1943002b7233aa7a5badb4fe20e4b29d81ea40e308b6a047efb2937c1ad8c3</originalsourceid><addsrcrecordid>eNo1kM1Kw0AUhcc_MK19gm7yAon3zk8m406CrUKkYBW6K3c6tziSNiUJSH16C9bVge98nMURYoqQI4K7n9eLavGaS0CZFwYUKrgQE2dL1IVV4CS6S5FIY4vMFnp1JUb_BRTXIkGnIDPSrW7FqO-_AIwuDSbi4W25TD31HNK4D23bpU27oSb-0BDbffodh8-0ibs4nITAh6Y97ng_nCQKd-JmS03Pk3OOxcfs6b16zurF_KV6rLOI1gyZYY9OKwDprVSKyJLxFLzesgTWXrpQIpMGVlD6gkBb3p6oshukUG7UWEz_diMzrw9d3FF3XJ8_UL8xA0yK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RSS based indoor localization with limited deployment load</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sorour, S. ; Lostanlen, Y. ; Valaee, S.</creator><creatorcontrib>Sorour, S. ; Lostanlen, Y. ; Valaee, S.</creatorcontrib><description>One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment load required to construct radio maps through fingerprinting. Several works aimed to employ radio propagation models as alternative to fingerprinting but the different sources of inaccuracies in the generation of these models result in high localization errors. In this paper, we propose an indoor localization scheme that can be directly deployed and employed without building a full radio map of the indoor environment. The proposed scheme employs the information from a radio propagation simulator and limited number of calibration measurements to perform direct localization using manifold alignment. For moving users, we exploit the correlation of their reported observations to improve the localization accuracy. The online performance evaluation shows that our algorithm achieves localization errors in the order of 2.5 to 3 m with as low as 15% - 30 % of the complete fingerprinting load.</description><identifier>ISSN: 1930-529X</identifier><identifier>ISBN: 1467309206</identifier><identifier>ISBN: 9781467309202</identifier><identifier>EISSN: 2576-764X</identifier><identifier>EISBN: 9781467309219</identifier><identifier>EISBN: 1467309192</identifier><identifier>EISBN: 1467309214</identifier><identifier>EISBN: 9781467309196</identifier><identifier>DOI: 10.1109/GLOCOM.2012.6503130</identifier><language>eng</language><publisher>IEEE</publisher><subject>Indoor Localization ; Manifold Alignment ; Radio Propagation Models ; Transfer Learning</subject><ispartof>2012 IEEE Global Communications Conference (GLOBECOM), 2012, p.303-308</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6503130$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6503130$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sorour, S.</creatorcontrib><creatorcontrib>Lostanlen, Y.</creatorcontrib><creatorcontrib>Valaee, S.</creatorcontrib><title>RSS based indoor localization with limited deployment load</title><title>2012 IEEE Global Communications Conference (GLOBECOM)</title><addtitle>GLOCOM</addtitle><description>One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment load required to construct radio maps through fingerprinting. Several works aimed to employ radio propagation models as alternative to fingerprinting but the different sources of inaccuracies in the generation of these models result in high localization errors. In this paper, we propose an indoor localization scheme that can be directly deployed and employed without building a full radio map of the indoor environment. The proposed scheme employs the information from a radio propagation simulator and limited number of calibration measurements to perform direct localization using manifold alignment. For moving users, we exploit the correlation of their reported observations to improve the localization accuracy. The online performance evaluation shows that our algorithm achieves localization errors in the order of 2.5 to 3 m with as low as 15% - 30 % of the complete fingerprinting load.</description><subject>Indoor Localization</subject><subject>Manifold Alignment</subject><subject>Radio Propagation Models</subject><subject>Transfer Learning</subject><issn>1930-529X</issn><issn>2576-764X</issn><isbn>1467309206</isbn><isbn>9781467309202</isbn><isbn>9781467309219</isbn><isbn>1467309192</isbn><isbn>1467309214</isbn><isbn>9781467309196</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1Kw0AUhcc_MK19gm7yAon3zk8m406CrUKkYBW6K3c6tziSNiUJSH16C9bVge98nMURYoqQI4K7n9eLavGaS0CZFwYUKrgQE2dL1IVV4CS6S5FIY4vMFnp1JUb_BRTXIkGnIDPSrW7FqO-_AIwuDSbi4W25TD31HNK4D23bpU27oSb-0BDbffodh8-0ibs4nITAh6Y97ng_nCQKd-JmS03Pk3OOxcfs6b16zurF_KV6rLOI1gyZYY9OKwDprVSKyJLxFLzesgTWXrpQIpMGVlD6gkBb3p6oshukUG7UWEz_diMzrw9d3FF3XJ8_UL8xA0yK</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Sorour, S.</creator><creator>Lostanlen, Y.</creator><creator>Valaee, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>RSS based indoor localization with limited deployment load</title><author>Sorour, S. ; Lostanlen, Y. ; Valaee, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5eb1943002b7233aa7a5badb4fe20e4b29d81ea40e308b6a047efb2937c1ad8c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Indoor Localization</topic><topic>Manifold Alignment</topic><topic>Radio Propagation Models</topic><topic>Transfer Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Sorour, S.</creatorcontrib><creatorcontrib>Lostanlen, Y.</creatorcontrib><creatorcontrib>Valaee, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sorour, S.</au><au>Lostanlen, Y.</au><au>Valaee, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RSS based indoor localization with limited deployment load</atitle><btitle>2012 IEEE Global Communications Conference (GLOBECOM)</btitle><stitle>GLOCOM</stitle><date>2012-12</date><risdate>2012</risdate><spage>303</spage><epage>308</epage><pages>303-308</pages><issn>1930-529X</issn><eissn>2576-764X</eissn><isbn>1467309206</isbn><isbn>9781467309202</isbn><eisbn>9781467309219</eisbn><eisbn>1467309192</eisbn><eisbn>1467309214</eisbn><eisbn>9781467309196</eisbn><abstract>One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment load required to construct radio maps through fingerprinting. Several works aimed to employ radio propagation models as alternative to fingerprinting but the different sources of inaccuracies in the generation of these models result in high localization errors. In this paper, we propose an indoor localization scheme that can be directly deployed and employed without building a full radio map of the indoor environment. The proposed scheme employs the information from a radio propagation simulator and limited number of calibration measurements to perform direct localization using manifold alignment. For moving users, we exploit the correlation of their reported observations to improve the localization accuracy. The online performance evaluation shows that our algorithm achieves localization errors in the order of 2.5 to 3 m with as low as 15% - 30 % of the complete fingerprinting load.</abstract><pub>IEEE</pub><doi>10.1109/GLOCOM.2012.6503130</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1930-529X |
ispartof | 2012 IEEE Global Communications Conference (GLOBECOM), 2012, p.303-308 |
issn | 1930-529X 2576-764X |
language | eng |
recordid | cdi_ieee_primary_6503130 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Indoor Localization Manifold Alignment Radio Propagation Models Transfer Learning |
title | RSS based indoor localization with limited deployment load |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RSS%20based%20indoor%20localization%20with%20limited%20deployment%20load&rft.btitle=2012%20IEEE%20Global%20Communications%20Conference%20(GLOBECOM)&rft.au=Sorour,%20S.&rft.date=2012-12&rft.spage=303&rft.epage=308&rft.pages=303-308&rft.issn=1930-529X&rft.eissn=2576-764X&rft.isbn=1467309206&rft.isbn_list=9781467309202&rft_id=info:doi/10.1109/GLOCOM.2012.6503130&rft_dat=%3Cieee_6IE%3E6503130%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467309219&rft.eisbn_list=1467309192&rft.eisbn_list=1467309214&rft.eisbn_list=9781467309196&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6503130&rfr_iscdi=true |