RSS based indoor localization with limited deployment load

One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment load required to construct radio maps through fingerprinting. Several works aimed to employ radio propagation models as alternative to fingerprinting b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sorour, S., Lostanlen, Y., Valaee, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue
container_start_page 303
container_title
container_volume
creator Sorour, S.
Lostanlen, Y.
Valaee, S.
description One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment load required to construct radio maps through fingerprinting. Several works aimed to employ radio propagation models as alternative to fingerprinting but the different sources of inaccuracies in the generation of these models result in high localization errors. In this paper, we propose an indoor localization scheme that can be directly deployed and employed without building a full radio map of the indoor environment. The proposed scheme employs the information from a radio propagation simulator and limited number of calibration measurements to perform direct localization using manifold alignment. For moving users, we exploit the correlation of their reported observations to improve the localization accuracy. The online performance evaluation shows that our algorithm achieves localization errors in the order of 2.5 to 3 m with as low as 15% - 30 % of the complete fingerprinting load.
doi_str_mv 10.1109/GLOCOM.2012.6503130
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6503130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6503130</ieee_id><sourcerecordid>6503130</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5eb1943002b7233aa7a5badb4fe20e4b29d81ea40e308b6a047efb2937c1ad8c3</originalsourceid><addsrcrecordid>eNo1kM1Kw0AUhcc_MK19gm7yAon3zk8m406CrUKkYBW6K3c6tziSNiUJSH16C9bVge98nMURYoqQI4K7n9eLavGaS0CZFwYUKrgQE2dL1IVV4CS6S5FIY4vMFnp1JUb_BRTXIkGnIDPSrW7FqO-_AIwuDSbi4W25TD31HNK4D23bpU27oSb-0BDbffodh8-0ibs4nITAh6Y97ng_nCQKd-JmS03Pk3OOxcfs6b16zurF_KV6rLOI1gyZYY9OKwDprVSKyJLxFLzesgTWXrpQIpMGVlD6gkBb3p6oshukUG7UWEz_diMzrw9d3FF3XJ8_UL8xA0yK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RSS based indoor localization with limited deployment load</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sorour, S. ; Lostanlen, Y. ; Valaee, S.</creator><creatorcontrib>Sorour, S. ; Lostanlen, Y. ; Valaee, S.</creatorcontrib><description>One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment load required to construct radio maps through fingerprinting. Several works aimed to employ radio propagation models as alternative to fingerprinting but the different sources of inaccuracies in the generation of these models result in high localization errors. In this paper, we propose an indoor localization scheme that can be directly deployed and employed without building a full radio map of the indoor environment. The proposed scheme employs the information from a radio propagation simulator and limited number of calibration measurements to perform direct localization using manifold alignment. For moving users, we exploit the correlation of their reported observations to improve the localization accuracy. The online performance evaluation shows that our algorithm achieves localization errors in the order of 2.5 to 3 m with as low as 15% - 30 % of the complete fingerprinting load.</description><identifier>ISSN: 1930-529X</identifier><identifier>ISBN: 1467309206</identifier><identifier>ISBN: 9781467309202</identifier><identifier>EISSN: 2576-764X</identifier><identifier>EISBN: 9781467309219</identifier><identifier>EISBN: 1467309192</identifier><identifier>EISBN: 1467309214</identifier><identifier>EISBN: 9781467309196</identifier><identifier>DOI: 10.1109/GLOCOM.2012.6503130</identifier><language>eng</language><publisher>IEEE</publisher><subject>Indoor Localization ; Manifold Alignment ; Radio Propagation Models ; Transfer Learning</subject><ispartof>2012 IEEE Global Communications Conference (GLOBECOM), 2012, p.303-308</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6503130$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6503130$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sorour, S.</creatorcontrib><creatorcontrib>Lostanlen, Y.</creatorcontrib><creatorcontrib>Valaee, S.</creatorcontrib><title>RSS based indoor localization with limited deployment load</title><title>2012 IEEE Global Communications Conference (GLOBECOM)</title><addtitle>GLOCOM</addtitle><description>One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment load required to construct radio maps through fingerprinting. Several works aimed to employ radio propagation models as alternative to fingerprinting but the different sources of inaccuracies in the generation of these models result in high localization errors. In this paper, we propose an indoor localization scheme that can be directly deployed and employed without building a full radio map of the indoor environment. The proposed scheme employs the information from a radio propagation simulator and limited number of calibration measurements to perform direct localization using manifold alignment. For moving users, we exploit the correlation of their reported observations to improve the localization accuracy. The online performance evaluation shows that our algorithm achieves localization errors in the order of 2.5 to 3 m with as low as 15% - 30 % of the complete fingerprinting load.</description><subject>Indoor Localization</subject><subject>Manifold Alignment</subject><subject>Radio Propagation Models</subject><subject>Transfer Learning</subject><issn>1930-529X</issn><issn>2576-764X</issn><isbn>1467309206</isbn><isbn>9781467309202</isbn><isbn>9781467309219</isbn><isbn>1467309192</isbn><isbn>1467309214</isbn><isbn>9781467309196</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1Kw0AUhcc_MK19gm7yAon3zk8m406CrUKkYBW6K3c6tziSNiUJSH16C9bVge98nMURYoqQI4K7n9eLavGaS0CZFwYUKrgQE2dL1IVV4CS6S5FIY4vMFnp1JUb_BRTXIkGnIDPSrW7FqO-_AIwuDSbi4W25TD31HNK4D23bpU27oSb-0BDbffodh8-0ibs4nITAh6Y97ng_nCQKd-JmS03Pk3OOxcfs6b16zurF_KV6rLOI1gyZYY9OKwDprVSKyJLxFLzesgTWXrpQIpMGVlD6gkBb3p6oshukUG7UWEz_diMzrw9d3FF3XJ8_UL8xA0yK</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Sorour, S.</creator><creator>Lostanlen, Y.</creator><creator>Valaee, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>RSS based indoor localization with limited deployment load</title><author>Sorour, S. ; Lostanlen, Y. ; Valaee, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5eb1943002b7233aa7a5badb4fe20e4b29d81ea40e308b6a047efb2937c1ad8c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Indoor Localization</topic><topic>Manifold Alignment</topic><topic>Radio Propagation Models</topic><topic>Transfer Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Sorour, S.</creatorcontrib><creatorcontrib>Lostanlen, Y.</creatorcontrib><creatorcontrib>Valaee, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sorour, S.</au><au>Lostanlen, Y.</au><au>Valaee, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RSS based indoor localization with limited deployment load</atitle><btitle>2012 IEEE Global Communications Conference (GLOBECOM)</btitle><stitle>GLOCOM</stitle><date>2012-12</date><risdate>2012</risdate><spage>303</spage><epage>308</epage><pages>303-308</pages><issn>1930-529X</issn><eissn>2576-764X</eissn><isbn>1467309206</isbn><isbn>9781467309202</isbn><eisbn>9781467309219</eisbn><eisbn>1467309192</eisbn><eisbn>1467309214</eisbn><eisbn>9781467309196</eisbn><abstract>One major bottleneck in the practical implementation of received signal strength (RSS) based indoor localization systems is the extensive deployment load required to construct radio maps through fingerprinting. Several works aimed to employ radio propagation models as alternative to fingerprinting but the different sources of inaccuracies in the generation of these models result in high localization errors. In this paper, we propose an indoor localization scheme that can be directly deployed and employed without building a full radio map of the indoor environment. The proposed scheme employs the information from a radio propagation simulator and limited number of calibration measurements to perform direct localization using manifold alignment. For moving users, we exploit the correlation of their reported observations to improve the localization accuracy. The online performance evaluation shows that our algorithm achieves localization errors in the order of 2.5 to 3 m with as low as 15% - 30 % of the complete fingerprinting load.</abstract><pub>IEEE</pub><doi>10.1109/GLOCOM.2012.6503130</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1930-529X
ispartof 2012 IEEE Global Communications Conference (GLOBECOM), 2012, p.303-308
issn 1930-529X
2576-764X
language eng
recordid cdi_ieee_primary_6503130
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Indoor Localization
Manifold Alignment
Radio Propagation Models
Transfer Learning
title RSS based indoor localization with limited deployment load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RSS%20based%20indoor%20localization%20with%20limited%20deployment%20load&rft.btitle=2012%20IEEE%20Global%20Communications%20Conference%20(GLOBECOM)&rft.au=Sorour,%20S.&rft.date=2012-12&rft.spage=303&rft.epage=308&rft.pages=303-308&rft.issn=1930-529X&rft.eissn=2576-764X&rft.isbn=1467309206&rft.isbn_list=9781467309202&rft_id=info:doi/10.1109/GLOCOM.2012.6503130&rft_dat=%3Cieee_6IE%3E6503130%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467309219&rft.eisbn_list=1467309192&rft.eisbn_list=1467309214&rft.eisbn_list=9781467309196&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6503130&rfr_iscdi=true