Lucas polynomials and power sums
The three - term recurrence x n + y n = (x + y) · (x n-1 + y n-1 ) - xy · (x n-2 + y n-2 ) allows to express x n + y n as a polynomial in the two variables x + y and xy. This polynomial is the bivariate Lucas polynomial. This identity is not as well known as it should be. It can be explained algebra...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Tamm, Ulrich |
description | The three - term recurrence x n + y n = (x + y) · (x n-1 + y n-1 ) - xy · (x n-2 + y n-2 ) allows to express x n + y n as a polynomial in the two variables x + y and xy. This polynomial is the bivariate Lucas polynomial. This identity is not as well known as it should be. It can be explained algebraically via the Girard - Waring formula, combinatorially via Lucas numbers and polynomials, and analytically as a special orthogonal polynomial. We shall briefly describe all these aspects and present an application from number theory. |
doi_str_mv | 10.1109/ITA.2013.6503003 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6503003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6503003</ieee_id><sourcerecordid>6503003</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-24181d540ba581fcf7d3ce4e60420463f88232721d11ede9fe3cf1e747dfd6f3</originalsourceid><addsrcrecordid>eNo1j01Lw0AQhkdEUGvugpf8gcSZncnu5liKH4WAl9zLmp2FSNOWrEX67y1YTw_Pc3jhBXgkrImwfV73y9ogcW0bZES-gnsS61isOLyGonX-3z3dQpHzFyISGWFLd1B2xyHk8rDfnnb7aQzbXIZdPPuPzmU-TvkBbtK5anHhAvrXl371XnUfb-vVsqtGcs13ZYQ8xUbwMzSe0pBc5EFFLYpBsZy8N2ycoUikUdukPCRSJy6maBMv4OlvdlTVzWEepzCfNpdP_AvmpD3h</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lucas polynomials and power sums</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tamm, Ulrich</creator><creatorcontrib>Tamm, Ulrich</creatorcontrib><description>The three - term recurrence x n + y n = (x + y) · (x n-1 + y n-1 ) - xy · (x n-2 + y n-2 ) allows to express x n + y n as a polynomial in the two variables x + y and xy. This polynomial is the bivariate Lucas polynomial. This identity is not as well known as it should be. It can be explained algebraically via the Girard - Waring formula, combinatorially via Lucas numbers and polynomials, and analytically as a special orthogonal polynomial. We shall briefly describe all these aspects and present an application from number theory.</description><identifier>ISBN: 9781467346481</identifier><identifier>ISBN: 1467346489</identifier><identifier>EISBN: 1467346470</identifier><identifier>EISBN: 9781467346474</identifier><identifier>DOI: 10.1109/ITA.2013.6503003</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chebyshev approximation ; Chebyshev polynomials ; Cryptography ; Educational institutions ; Encoding ; Girard - Waring formula ; Lucas polynomials ; orthogonal polynomials ; Polynomials ; zeta function</subject><ispartof>2013 Information Theory and Applications Workshop (ITA), 2013, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6503003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6503003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tamm, Ulrich</creatorcontrib><title>Lucas polynomials and power sums</title><title>2013 Information Theory and Applications Workshop (ITA)</title><addtitle>ITA</addtitle><description>The three - term recurrence x n + y n = (x + y) · (x n-1 + y n-1 ) - xy · (x n-2 + y n-2 ) allows to express x n + y n as a polynomial in the two variables x + y and xy. This polynomial is the bivariate Lucas polynomial. This identity is not as well known as it should be. It can be explained algebraically via the Girard - Waring formula, combinatorially via Lucas numbers and polynomials, and analytically as a special orthogonal polynomial. We shall briefly describe all these aspects and present an application from number theory.</description><subject>Chebyshev approximation</subject><subject>Chebyshev polynomials</subject><subject>Cryptography</subject><subject>Educational institutions</subject><subject>Encoding</subject><subject>Girard - Waring formula</subject><subject>Lucas polynomials</subject><subject>orthogonal polynomials</subject><subject>Polynomials</subject><subject>zeta function</subject><isbn>9781467346481</isbn><isbn>1467346489</isbn><isbn>1467346470</isbn><isbn>9781467346474</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j01Lw0AQhkdEUGvugpf8gcSZncnu5liKH4WAl9zLmp2FSNOWrEX67y1YTw_Pc3jhBXgkrImwfV73y9ogcW0bZES-gnsS61isOLyGonX-3z3dQpHzFyISGWFLd1B2xyHk8rDfnnb7aQzbXIZdPPuPzmU-TvkBbtK5anHhAvrXl371XnUfb-vVsqtGcs13ZYQ8xUbwMzSe0pBc5EFFLYpBsZy8N2ycoUikUdukPCRSJy6maBMv4OlvdlTVzWEepzCfNpdP_AvmpD3h</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Tamm, Ulrich</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201302</creationdate><title>Lucas polynomials and power sums</title><author>Tamm, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-24181d540ba581fcf7d3ce4e60420463f88232721d11ede9fe3cf1e747dfd6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chebyshev approximation</topic><topic>Chebyshev polynomials</topic><topic>Cryptography</topic><topic>Educational institutions</topic><topic>Encoding</topic><topic>Girard - Waring formula</topic><topic>Lucas polynomials</topic><topic>orthogonal polynomials</topic><topic>Polynomials</topic><topic>zeta function</topic><toplevel>online_resources</toplevel><creatorcontrib>Tamm, Ulrich</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tamm, Ulrich</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lucas polynomials and power sums</atitle><btitle>2013 Information Theory and Applications Workshop (ITA)</btitle><stitle>ITA</stitle><date>2013-02</date><risdate>2013</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781467346481</isbn><isbn>1467346489</isbn><eisbn>1467346470</eisbn><eisbn>9781467346474</eisbn><abstract>The three - term recurrence x n + y n = (x + y) · (x n-1 + y n-1 ) - xy · (x n-2 + y n-2 ) allows to express x n + y n as a polynomial in the two variables x + y and xy. This polynomial is the bivariate Lucas polynomial. This identity is not as well known as it should be. It can be explained algebraically via the Girard - Waring formula, combinatorially via Lucas numbers and polynomials, and analytically as a special orthogonal polynomial. We shall briefly describe all these aspects and present an application from number theory.</abstract><pub>IEEE</pub><doi>10.1109/ITA.2013.6503003</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467346481 |
ispartof | 2013 Information Theory and Applications Workshop (ITA), 2013, p.1-4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6503003 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chebyshev approximation Chebyshev polynomials Cryptography Educational institutions Encoding Girard - Waring formula Lucas polynomials orthogonal polynomials Polynomials zeta function |
title | Lucas polynomials and power sums |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lucas%20polynomials%20and%20power%20sums&rft.btitle=2013%20Information%20Theory%20and%20Applications%20Workshop%20(ITA)&rft.au=Tamm,%20Ulrich&rft.date=2013-02&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781467346481&rft.isbn_list=1467346489&rft_id=info:doi/10.1109/ITA.2013.6503003&rft_dat=%3Cieee_6IE%3E6503003%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467346470&rft.eisbn_list=9781467346474&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6503003&rfr_iscdi=true |