An improved approach to video target tracking based on Mean Shift
This paper proposes an algorithm based on Mean Shift, which improves on the kernel function, alterative weights, combing with Kalman filter and neighborhood searching. These improvements not only enhance the capacity of target tracking, but also reduce the computations to satisfy the need of the rea...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Nan Luo Huanyu Xu Deshen Xia |
description | This paper proposes an algorithm based on Mean Shift, which improves on the kernel function, alterative weights, combing with Kalman filter and neighborhood searching. These improvements not only enhance the capacity of target tracking, but also reduce the computations to satisfy the need of the real-time job. Furthermore, experimental results illuminate that the proposed algorithm can cope with clutter, target partial occlusions, scale variations and fast moving in the real-time video target tracking. |
doi_str_mv | 10.1109/IConSCS.2012.6502465 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6502465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6502465</ieee_id><sourcerecordid>6502465</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a86c9027ea904b72b708e4f46a892d9793ae3c914b1d42ab9ea0fb499fcdc5973</originalsourceid><addsrcrecordid>eNo1j91KxDAUhCMiqGufQC_yAq0naZr0XJbiz8KKF1XwbjlJ092o25Y2LPj2FlyvZga-GRjG7gRkQgDer-uhb-omkyBkpguQShdn7FoobXLQRn6cswRN-Z9zc8mSef4EgKVuQOkrVlU9D4dxGo6-5TQuhtyex4EfQ-sHHmna-cjjRO4r9DtuaV64oecvnnre7EMXb9hFR9-zT066Yu-PD2_1c7p5fVrX1SYNwhQxpVI7BGk8IShrpDVQetUpTSXKFg3m5HOHQlnRKkkWPUFnFWLnWlegyVfs9m83eO-34xQONP1sT6_zXxMYS6g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An improved approach to video target tracking based on Mean Shift</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nan Luo ; Huanyu Xu ; Deshen Xia</creator><creatorcontrib>Nan Luo ; Huanyu Xu ; Deshen Xia</creatorcontrib><description>This paper proposes an algorithm based on Mean Shift, which improves on the kernel function, alterative weights, combing with Kalman filter and neighborhood searching. These improvements not only enhance the capacity of target tracking, but also reduce the computations to satisfy the need of the real-time job. Furthermore, experimental results illuminate that the proposed algorithm can cope with clutter, target partial occlusions, scale variations and fast moving in the real-time video target tracking.</description><identifier>ISBN: 9781467306737</identifier><identifier>ISBN: 1467306738</identifier><identifier>EISBN: 146730672X</identifier><identifier>EISBN: 9781467306744</identifier><identifier>EISBN: 9781467306720</identifier><identifier>EISBN: 1467306746</identifier><identifier>DOI: 10.1109/IConSCS.2012.6502465</identifier><language>eng</language><publisher>IEEE</publisher><subject>fast moving target ; kalman filter ; kernel function ; mean shift ; video tracking</subject><ispartof>2012 1st International Conference on Systems and Computer Science (ICSCS), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6502465$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6502465$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nan Luo</creatorcontrib><creatorcontrib>Huanyu Xu</creatorcontrib><creatorcontrib>Deshen Xia</creatorcontrib><title>An improved approach to video target tracking based on Mean Shift</title><title>2012 1st International Conference on Systems and Computer Science (ICSCS)</title><addtitle>IConSCS</addtitle><description>This paper proposes an algorithm based on Mean Shift, which improves on the kernel function, alterative weights, combing with Kalman filter and neighborhood searching. These improvements not only enhance the capacity of target tracking, but also reduce the computations to satisfy the need of the real-time job. Furthermore, experimental results illuminate that the proposed algorithm can cope with clutter, target partial occlusions, scale variations and fast moving in the real-time video target tracking.</description><subject>fast moving target</subject><subject>kalman filter</subject><subject>kernel function</subject><subject>mean shift</subject><subject>video tracking</subject><isbn>9781467306737</isbn><isbn>1467306738</isbn><isbn>146730672X</isbn><isbn>9781467306744</isbn><isbn>9781467306720</isbn><isbn>1467306746</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91KxDAUhCMiqGufQC_yAq0naZr0XJbiz8KKF1XwbjlJ092o25Y2LPj2FlyvZga-GRjG7gRkQgDer-uhb-omkyBkpguQShdn7FoobXLQRn6cswRN-Z9zc8mSef4EgKVuQOkrVlU9D4dxGo6-5TQuhtyex4EfQ-sHHmna-cjjRO4r9DtuaV64oecvnnre7EMXb9hFR9-zT066Yu-PD2_1c7p5fVrX1SYNwhQxpVI7BGk8IShrpDVQetUpTSXKFg3m5HOHQlnRKkkWPUFnFWLnWlegyVfs9m83eO-34xQONP1sT6_zXxMYS6g</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Nan Luo</creator><creator>Huanyu Xu</creator><creator>Deshen Xia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>An improved approach to video target tracking based on Mean Shift</title><author>Nan Luo ; Huanyu Xu ; Deshen Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a86c9027ea904b72b708e4f46a892d9793ae3c914b1d42ab9ea0fb499fcdc5973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>fast moving target</topic><topic>kalman filter</topic><topic>kernel function</topic><topic>mean shift</topic><topic>video tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Nan Luo</creatorcontrib><creatorcontrib>Huanyu Xu</creatorcontrib><creatorcontrib>Deshen Xia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nan Luo</au><au>Huanyu Xu</au><au>Deshen Xia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An improved approach to video target tracking based on Mean Shift</atitle><btitle>2012 1st International Conference on Systems and Computer Science (ICSCS)</btitle><stitle>IConSCS</stitle><date>2012-08</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467306737</isbn><isbn>1467306738</isbn><eisbn>146730672X</eisbn><eisbn>9781467306744</eisbn><eisbn>9781467306720</eisbn><eisbn>1467306746</eisbn><abstract>This paper proposes an algorithm based on Mean Shift, which improves on the kernel function, alterative weights, combing with Kalman filter and neighborhood searching. These improvements not only enhance the capacity of target tracking, but also reduce the computations to satisfy the need of the real-time job. Furthermore, experimental results illuminate that the proposed algorithm can cope with clutter, target partial occlusions, scale variations and fast moving in the real-time video target tracking.</abstract><pub>IEEE</pub><doi>10.1109/IConSCS.2012.6502465</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467306737 |
ispartof | 2012 1st International Conference on Systems and Computer Science (ICSCS), 2012, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6502465 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | fast moving target kalman filter kernel function mean shift video tracking |
title | An improved approach to video target tracking based on Mean Shift |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20improved%20approach%20to%20video%20target%20tracking%20based%20on%20Mean%20Shift&rft.btitle=2012%201st%20International%20Conference%20on%20Systems%20and%20Computer%20Science%20(ICSCS)&rft.au=Nan%20Luo&rft.date=2012-08&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467306737&rft.isbn_list=1467306738&rft_id=info:doi/10.1109/IConSCS.2012.6502465&rft_dat=%3Cieee_6IE%3E6502465%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146730672X&rft.eisbn_list=9781467306744&rft.eisbn_list=9781467306720&rft.eisbn_list=1467306746&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6502465&rfr_iscdi=true |