An improved approach to video target tracking based on Mean Shift

This paper proposes an algorithm based on Mean Shift, which improves on the kernel function, alterative weights, combing with Kalman filter and neighborhood searching. These improvements not only enhance the capacity of target tracking, but also reduce the computations to satisfy the need of the rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nan Luo, Huanyu Xu, Deshen Xia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Nan Luo
Huanyu Xu
Deshen Xia
description This paper proposes an algorithm based on Mean Shift, which improves on the kernel function, alterative weights, combing with Kalman filter and neighborhood searching. These improvements not only enhance the capacity of target tracking, but also reduce the computations to satisfy the need of the real-time job. Furthermore, experimental results illuminate that the proposed algorithm can cope with clutter, target partial occlusions, scale variations and fast moving in the real-time video target tracking.
doi_str_mv 10.1109/IConSCS.2012.6502465
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6502465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6502465</ieee_id><sourcerecordid>6502465</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a86c9027ea904b72b708e4f46a892d9793ae3c914b1d42ab9ea0fb499fcdc5973</originalsourceid><addsrcrecordid>eNo1j91KxDAUhCMiqGufQC_yAq0naZr0XJbiz8KKF1XwbjlJ092o25Y2LPj2FlyvZga-GRjG7gRkQgDer-uhb-omkyBkpguQShdn7FoobXLQRn6cswRN-Z9zc8mSef4EgKVuQOkrVlU9D4dxGo6-5TQuhtyex4EfQ-sHHmna-cjjRO4r9DtuaV64oecvnnre7EMXb9hFR9-zT066Yu-PD2_1c7p5fVrX1SYNwhQxpVI7BGk8IShrpDVQetUpTSXKFg3m5HOHQlnRKkkWPUFnFWLnWlegyVfs9m83eO-34xQONP1sT6_zXxMYS6g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An improved approach to video target tracking based on Mean Shift</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nan Luo ; Huanyu Xu ; Deshen Xia</creator><creatorcontrib>Nan Luo ; Huanyu Xu ; Deshen Xia</creatorcontrib><description>This paper proposes an algorithm based on Mean Shift, which improves on the kernel function, alterative weights, combing with Kalman filter and neighborhood searching. These improvements not only enhance the capacity of target tracking, but also reduce the computations to satisfy the need of the real-time job. Furthermore, experimental results illuminate that the proposed algorithm can cope with clutter, target partial occlusions, scale variations and fast moving in the real-time video target tracking.</description><identifier>ISBN: 9781467306737</identifier><identifier>ISBN: 1467306738</identifier><identifier>EISBN: 146730672X</identifier><identifier>EISBN: 9781467306744</identifier><identifier>EISBN: 9781467306720</identifier><identifier>EISBN: 1467306746</identifier><identifier>DOI: 10.1109/IConSCS.2012.6502465</identifier><language>eng</language><publisher>IEEE</publisher><subject>fast moving target ; kalman filter ; kernel function ; mean shift ; video tracking</subject><ispartof>2012 1st International Conference on Systems and Computer Science (ICSCS), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6502465$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6502465$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nan Luo</creatorcontrib><creatorcontrib>Huanyu Xu</creatorcontrib><creatorcontrib>Deshen Xia</creatorcontrib><title>An improved approach to video target tracking based on Mean Shift</title><title>2012 1st International Conference on Systems and Computer Science (ICSCS)</title><addtitle>IConSCS</addtitle><description>This paper proposes an algorithm based on Mean Shift, which improves on the kernel function, alterative weights, combing with Kalman filter and neighborhood searching. These improvements not only enhance the capacity of target tracking, but also reduce the computations to satisfy the need of the real-time job. Furthermore, experimental results illuminate that the proposed algorithm can cope with clutter, target partial occlusions, scale variations and fast moving in the real-time video target tracking.</description><subject>fast moving target</subject><subject>kalman filter</subject><subject>kernel function</subject><subject>mean shift</subject><subject>video tracking</subject><isbn>9781467306737</isbn><isbn>1467306738</isbn><isbn>146730672X</isbn><isbn>9781467306744</isbn><isbn>9781467306720</isbn><isbn>1467306746</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91KxDAUhCMiqGufQC_yAq0naZr0XJbiz8KKF1XwbjlJ092o25Y2LPj2FlyvZga-GRjG7gRkQgDer-uhb-omkyBkpguQShdn7FoobXLQRn6cswRN-Z9zc8mSef4EgKVuQOkrVlU9D4dxGo6-5TQuhtyex4EfQ-sHHmna-cjjRO4r9DtuaV64oecvnnre7EMXb9hFR9-zT066Yu-PD2_1c7p5fVrX1SYNwhQxpVI7BGk8IShrpDVQetUpTSXKFg3m5HOHQlnRKkkWPUFnFWLnWlegyVfs9m83eO-34xQONP1sT6_zXxMYS6g</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Nan Luo</creator><creator>Huanyu Xu</creator><creator>Deshen Xia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>An improved approach to video target tracking based on Mean Shift</title><author>Nan Luo ; Huanyu Xu ; Deshen Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a86c9027ea904b72b708e4f46a892d9793ae3c914b1d42ab9ea0fb499fcdc5973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>fast moving target</topic><topic>kalman filter</topic><topic>kernel function</topic><topic>mean shift</topic><topic>video tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Nan Luo</creatorcontrib><creatorcontrib>Huanyu Xu</creatorcontrib><creatorcontrib>Deshen Xia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nan Luo</au><au>Huanyu Xu</au><au>Deshen Xia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An improved approach to video target tracking based on Mean Shift</atitle><btitle>2012 1st International Conference on Systems and Computer Science (ICSCS)</btitle><stitle>IConSCS</stitle><date>2012-08</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467306737</isbn><isbn>1467306738</isbn><eisbn>146730672X</eisbn><eisbn>9781467306744</eisbn><eisbn>9781467306720</eisbn><eisbn>1467306746</eisbn><abstract>This paper proposes an algorithm based on Mean Shift, which improves on the kernel function, alterative weights, combing with Kalman filter and neighborhood searching. These improvements not only enhance the capacity of target tracking, but also reduce the computations to satisfy the need of the real-time job. Furthermore, experimental results illuminate that the proposed algorithm can cope with clutter, target partial occlusions, scale variations and fast moving in the real-time video target tracking.</abstract><pub>IEEE</pub><doi>10.1109/IConSCS.2012.6502465</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467306737
ispartof 2012 1st International Conference on Systems and Computer Science (ICSCS), 2012, p.1-6
issn
language eng
recordid cdi_ieee_primary_6502465
source IEEE Electronic Library (IEL) Conference Proceedings
subjects fast moving target
kalman filter
kernel function
mean shift
video tracking
title An improved approach to video target tracking based on Mean Shift
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20improved%20approach%20to%20video%20target%20tracking%20based%20on%20Mean%20Shift&rft.btitle=2012%201st%20International%20Conference%20on%20Systems%20and%20Computer%20Science%20(ICSCS)&rft.au=Nan%20Luo&rft.date=2012-08&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467306737&rft.isbn_list=1467306738&rft_id=info:doi/10.1109/IConSCS.2012.6502465&rft_dat=%3Cieee_6IE%3E6502465%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146730672X&rft.eisbn_list=9781467306744&rft.eisbn_list=9781467306720&rft.eisbn_list=1467306746&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6502465&rfr_iscdi=true