Dermatology diagnosis with feature selection methods and artificial neural network

Dermatology or skin disease is one of the popular diseases among other diseases these days. The features similarities between different types of skin diseases make diagnosis of skin diseases very complex. A patient needs dermatologist that has a sound and vast good experience in skin diseases in ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abdul-Rahman, S., Norhan, A. K., Yusoff, M., Mohamed, A., Mutalib, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue
container_start_page 371
container_title
container_volume
creator Abdul-Rahman, S.
Norhan, A. K.
Yusoff, M.
Mohamed, A.
Mutalib, S.
description Dermatology or skin disease is one of the popular diseases among other diseases these days. The features similarities between different types of skin diseases make diagnosis of skin diseases very complex. A patient needs dermatologist that has a sound and vast good experience in skin diseases in order to give precise results at the right time. This paper elaborates a prototype with back propagation neural network (BPNN) to assist the dermatologist. This prototype improves expert diagnosis method in term of time efficiency and diagnosis accuracy. The use of two feature selection methods namely Correlation Feature Selection (CFS) and Fast Correlation-based Filter (FCBF) help by providing a smaller number of features with greater accuracy and faster response time. The adjustment of parameter in BPNN gives good performance. The findings show that FCBF method offers the shortest elapsed time and highest result compared to CFS method and the full features with an accuracy of 91.2%.
doi_str_mv 10.1109/IECBES.2012.6498195
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6498195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6498195</ieee_id><sourcerecordid>6498195</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-de70bade2ba412480382695c1724b42c0662bee6077673c3f8dfcd15b563b8f3</originalsourceid><addsrcrecordid>eNpVkNFKwzAYhSMiKLNPsJu8QGuSpkl6qbW6wUDQ3Y-0-bNF20aSjLG3t-huvDh8nJuPw0FoSUlBKakf1m3z1H4UjFBWCF4rWldXKKulolzIkgoh1PW_zvktymL8JITMAjHnDr0_Qxh18oPfn7Fxej_56CI-uXTAFnQ6BsARBuiT8xMeIR28iVhPBuuQnHW90wOe4Bh-kU4-fN2jG6uHCNmFC7R9abfNKt-8va6bx03uqKxSbkCSThtgneaUcUVKxURd9VQy3nHWEyFYByCIlPP8vrTK2N7QqqtE2SlbLtDyT-sAYPcd3KjDeXc5ovwB0_5S0g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dermatology diagnosis with feature selection methods and artificial neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abdul-Rahman, S. ; Norhan, A. K. ; Yusoff, M. ; Mohamed, A. ; Mutalib, S.</creator><creatorcontrib>Abdul-Rahman, S. ; Norhan, A. K. ; Yusoff, M. ; Mohamed, A. ; Mutalib, S.</creatorcontrib><description>Dermatology or skin disease is one of the popular diseases among other diseases these days. The features similarities between different types of skin diseases make diagnosis of skin diseases very complex. A patient needs dermatologist that has a sound and vast good experience in skin diseases in order to give precise results at the right time. This paper elaborates a prototype with back propagation neural network (BPNN) to assist the dermatologist. This prototype improves expert diagnosis method in term of time efficiency and diagnosis accuracy. The use of two feature selection methods namely Correlation Feature Selection (CFS) and Fast Correlation-based Filter (FCBF) help by providing a smaller number of features with greater accuracy and faster response time. The adjustment of parameter in BPNN gives good performance. The findings show that FCBF method offers the shortest elapsed time and highest result compared to CFS method and the full features with an accuracy of 91.2%.</description><identifier>ISBN: 9781467316644</identifier><identifier>ISBN: 1467316644</identifier><identifier>EISBN: 9781467316668</identifier><identifier>EISBN: 1467316660</identifier><identifier>DOI: 10.1109/IECBES.2012.6498195</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Neural Network ; Dermatology ; Feature Selection ; Skin disease</subject><ispartof>2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, 2012, p.371-376</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6498195$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6498195$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abdul-Rahman, S.</creatorcontrib><creatorcontrib>Norhan, A. K.</creatorcontrib><creatorcontrib>Yusoff, M.</creatorcontrib><creatorcontrib>Mohamed, A.</creatorcontrib><creatorcontrib>Mutalib, S.</creatorcontrib><title>Dermatology diagnosis with feature selection methods and artificial neural network</title><title>2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences</title><addtitle>IECBES</addtitle><description>Dermatology or skin disease is one of the popular diseases among other diseases these days. The features similarities between different types of skin diseases make diagnosis of skin diseases very complex. A patient needs dermatologist that has a sound and vast good experience in skin diseases in order to give precise results at the right time. This paper elaborates a prototype with back propagation neural network (BPNN) to assist the dermatologist. This prototype improves expert diagnosis method in term of time efficiency and diagnosis accuracy. The use of two feature selection methods namely Correlation Feature Selection (CFS) and Fast Correlation-based Filter (FCBF) help by providing a smaller number of features with greater accuracy and faster response time. The adjustment of parameter in BPNN gives good performance. The findings show that FCBF method offers the shortest elapsed time and highest result compared to CFS method and the full features with an accuracy of 91.2%.</description><subject>Artificial Neural Network</subject><subject>Dermatology</subject><subject>Feature Selection</subject><subject>Skin disease</subject><isbn>9781467316644</isbn><isbn>1467316644</isbn><isbn>9781467316668</isbn><isbn>1467316660</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkNFKwzAYhSMiKLNPsJu8QGuSpkl6qbW6wUDQ3Y-0-bNF20aSjLG3t-huvDh8nJuPw0FoSUlBKakf1m3z1H4UjFBWCF4rWldXKKulolzIkgoh1PW_zvktymL8JITMAjHnDr0_Qxh18oPfn7Fxej_56CI-uXTAFnQ6BsARBuiT8xMeIR28iVhPBuuQnHW90wOe4Bh-kU4-fN2jG6uHCNmFC7R9abfNKt-8va6bx03uqKxSbkCSThtgneaUcUVKxURd9VQy3nHWEyFYByCIlPP8vrTK2N7QqqtE2SlbLtDyT-sAYPcd3KjDeXc5ovwB0_5S0g</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Abdul-Rahman, S.</creator><creator>Norhan, A. K.</creator><creator>Yusoff, M.</creator><creator>Mohamed, A.</creator><creator>Mutalib, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Dermatology diagnosis with feature selection methods and artificial neural network</title><author>Abdul-Rahman, S. ; Norhan, A. K. ; Yusoff, M. ; Mohamed, A. ; Mutalib, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-de70bade2ba412480382695c1724b42c0662bee6077673c3f8dfcd15b563b8f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Neural Network</topic><topic>Dermatology</topic><topic>Feature Selection</topic><topic>Skin disease</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdul-Rahman, S.</creatorcontrib><creatorcontrib>Norhan, A. K.</creatorcontrib><creatorcontrib>Yusoff, M.</creatorcontrib><creatorcontrib>Mohamed, A.</creatorcontrib><creatorcontrib>Mutalib, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abdul-Rahman, S.</au><au>Norhan, A. K.</au><au>Yusoff, M.</au><au>Mohamed, A.</au><au>Mutalib, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dermatology diagnosis with feature selection methods and artificial neural network</atitle><btitle>2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences</btitle><stitle>IECBES</stitle><date>2012-12</date><risdate>2012</risdate><spage>371</spage><epage>376</epage><pages>371-376</pages><isbn>9781467316644</isbn><isbn>1467316644</isbn><eisbn>9781467316668</eisbn><eisbn>1467316660</eisbn><abstract>Dermatology or skin disease is one of the popular diseases among other diseases these days. The features similarities between different types of skin diseases make diagnosis of skin diseases very complex. A patient needs dermatologist that has a sound and vast good experience in skin diseases in order to give precise results at the right time. This paper elaborates a prototype with back propagation neural network (BPNN) to assist the dermatologist. This prototype improves expert diagnosis method in term of time efficiency and diagnosis accuracy. The use of two feature selection methods namely Correlation Feature Selection (CFS) and Fast Correlation-based Filter (FCBF) help by providing a smaller number of features with greater accuracy and faster response time. The adjustment of parameter in BPNN gives good performance. The findings show that FCBF method offers the shortest elapsed time and highest result compared to CFS method and the full features with an accuracy of 91.2%.</abstract><pub>IEEE</pub><doi>10.1109/IECBES.2012.6498195</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467316644
ispartof 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, 2012, p.371-376
issn
language eng
recordid cdi_ieee_primary_6498195
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial Neural Network
Dermatology
Feature Selection
Skin disease
title Dermatology diagnosis with feature selection methods and artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dermatology%20diagnosis%20with%20feature%20selection%20methods%20and%20artificial%20neural%20network&rft.btitle=2012%20IEEE-EMBS%20Conference%20on%20Biomedical%20Engineering%20and%20Sciences&rft.au=Abdul-Rahman,%20S.&rft.date=2012-12&rft.spage=371&rft.epage=376&rft.pages=371-376&rft.isbn=9781467316644&rft.isbn_list=1467316644&rft_id=info:doi/10.1109/IECBES.2012.6498195&rft_dat=%3Cieee_6IE%3E6498195%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467316668&rft.eisbn_list=1467316660&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6498195&rfr_iscdi=true