An Optimal Sample Allocation Strategy for Partition-Based Random Search
Partition-based random search (PRS) provides a class of effective algorithms for global optimization. In each iteration of a PRS algorithm, the solution space is partitioned into subsets which are randomly sampled and evaluated. One subset is then determined to be the promising subset for further pa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2014-01, Vol.11 (1), p.177-186 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 1 |
container_start_page | 177 |
container_title | IEEE transactions on automation science and engineering |
container_volume | 11 |
creator | Chen, Weiwei Gao, Siyang Chen, Chun-Hung Shi, Leyuan |
description | Partition-based random search (PRS) provides a class of effective algorithms for global optimization. In each iteration of a PRS algorithm, the solution space is partitioned into subsets which are randomly sampled and evaluated. One subset is then determined to be the promising subset for further partitioning. In this paper, we propose the problem of allocating samples to each subset so that the samples are utilized most efficiently. Two types of sample allocation problems are discussed, with objectives of maximizing the probability of correctly selecting the promising subset (P{CSPS}) given a sample budget and minimizing the required sample size to achieve a satisfied level of P{CSPS}, respectively. An extreme value-based prospectiveness criterion is introduced and an asymptotically optimal solution to the two types of sample allocation problems is developed. The resulting optimal sample allocation strategy (OSAS) is an effective procedure for the existing PRS algorithms by intelligently utilizing the limited computing resources. Numerical tests confirm that OSAS is capable of increasing the P{CSPS} in each iteration and subsequently improving the performance of PRS algorithms. |
doi_str_mv | 10.1109/TASE.2013.2251881 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6497538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6497538</ieee_id><sourcerecordid>1506367508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-ec1e4f3dea08f082ef800cf3be19c87a5facb7dff45b8d86681d7898ac62d9c53</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSupvNfh1rqVUoVEw9L9vNrKYk2bibHvrvTah48DQvw_MOw5MktwTPCMHqcTsvlrMMEzrLMkakJGfJhDAmUyokPR9zzlKmGLtMrmLcY5zlUuFJspq3aNP1VWNqVJimqwHN69pb01e-RUUfTA-fR-R8QG8m9NW4Tp9MhBK9m7b0DSrABPt1nVw4U0e4-Z3T5ON5uV28pOvN6nUxX6eWZrxPwRLIHS3BYOmwzMBJjK2jOyDKSmGYM3YnSudytpOl5FySUkgljeVZqSyj0-ThdLcL_vsAsddNFS3UtWnBH6ImDHPKBcNyQO__oXt_CO3wnSa5EEJRpvhAkRNlg48xgNNdGGyEoyZYj2r1qFaPavWv2qFzd-pUAPDH81wJRiX9AfvWdJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477793596</pqid></control><display><type>article</type><title>An Optimal Sample Allocation Strategy for Partition-Based Random Search</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Weiwei ; Gao, Siyang ; Chen, Chun-Hung ; Shi, Leyuan</creator><creatorcontrib>Chen, Weiwei ; Gao, Siyang ; Chen, Chun-Hung ; Shi, Leyuan</creatorcontrib><description>Partition-based random search (PRS) provides a class of effective algorithms for global optimization. In each iteration of a PRS algorithm, the solution space is partitioned into subsets which are randomly sampled and evaluated. One subset is then determined to be the promising subset for further partitioning. In this paper, we propose the problem of allocating samples to each subset so that the samples are utilized most efficiently. Two types of sample allocation problems are discussed, with objectives of maximizing the probability of correctly selecting the promising subset (P{CSPS}) given a sample budget and minimizing the required sample size to achieve a satisfied level of P{CSPS}, respectively. An extreme value-based prospectiveness criterion is introduced and an asymptotically optimal solution to the two types of sample allocation problems is developed. The resulting optimal sample allocation strategy (OSAS) is an effective procedure for the existing PRS algorithms by intelligently utilizing the limited computing resources. Numerical tests confirm that OSAS is capable of increasing the P{CSPS} in each iteration and subsequently improving the performance of PRS algorithms.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2013.2251881</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Global optimization ; Numerical analysis ; optimal sample allocation ; Optimization ; partition-based random search ; Probability ; Sample size</subject><ispartof>IEEE transactions on automation science and engineering, 2014-01, Vol.11 (1), p.177-186</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-ec1e4f3dea08f082ef800cf3be19c87a5facb7dff45b8d86681d7898ac62d9c53</citedby><cites>FETCH-LOGICAL-c326t-ec1e4f3dea08f082ef800cf3be19c87a5facb7dff45b8d86681d7898ac62d9c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6497538$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6497538$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Weiwei</creatorcontrib><creatorcontrib>Gao, Siyang</creatorcontrib><creatorcontrib>Chen, Chun-Hung</creatorcontrib><creatorcontrib>Shi, Leyuan</creatorcontrib><title>An Optimal Sample Allocation Strategy for Partition-Based Random Search</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>Partition-based random search (PRS) provides a class of effective algorithms for global optimization. In each iteration of a PRS algorithm, the solution space is partitioned into subsets which are randomly sampled and evaluated. One subset is then determined to be the promising subset for further partitioning. In this paper, we propose the problem of allocating samples to each subset so that the samples are utilized most efficiently. Two types of sample allocation problems are discussed, with objectives of maximizing the probability of correctly selecting the promising subset (P{CSPS}) given a sample budget and minimizing the required sample size to achieve a satisfied level of P{CSPS}, respectively. An extreme value-based prospectiveness criterion is introduced and an asymptotically optimal solution to the two types of sample allocation problems is developed. The resulting optimal sample allocation strategy (OSAS) is an effective procedure for the existing PRS algorithms by intelligently utilizing the limited computing resources. Numerical tests confirm that OSAS is capable of increasing the P{CSPS} in each iteration and subsequently improving the performance of PRS algorithms.</description><subject>Algorithms</subject><subject>Global optimization</subject><subject>Numerical analysis</subject><subject>optimal sample allocation</subject><subject>Optimization</subject><subject>partition-based random search</subject><subject>Probability</subject><subject>Sample size</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSupvNfh1rqVUoVEw9L9vNrKYk2bibHvrvTah48DQvw_MOw5MktwTPCMHqcTsvlrMMEzrLMkakJGfJhDAmUyokPR9zzlKmGLtMrmLcY5zlUuFJspq3aNP1VWNqVJimqwHN69pb01e-RUUfTA-fR-R8QG8m9NW4Tp9MhBK9m7b0DSrABPt1nVw4U0e4-Z3T5ON5uV28pOvN6nUxX6eWZrxPwRLIHS3BYOmwzMBJjK2jOyDKSmGYM3YnSudytpOl5FySUkgljeVZqSyj0-ThdLcL_vsAsddNFS3UtWnBH6ImDHPKBcNyQO__oXt_CO3wnSa5EEJRpvhAkRNlg48xgNNdGGyEoyZYj2r1qFaPavWv2qFzd-pUAPDH81wJRiX9AfvWdJs</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Chen, Weiwei</creator><creator>Gao, Siyang</creator><creator>Chen, Chun-Hung</creator><creator>Shi, Leyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201401</creationdate><title>An Optimal Sample Allocation Strategy for Partition-Based Random Search</title><author>Chen, Weiwei ; Gao, Siyang ; Chen, Chun-Hung ; Shi, Leyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-ec1e4f3dea08f082ef800cf3be19c87a5facb7dff45b8d86681d7898ac62d9c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Global optimization</topic><topic>Numerical analysis</topic><topic>optimal sample allocation</topic><topic>Optimization</topic><topic>partition-based random search</topic><topic>Probability</topic><topic>Sample size</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Weiwei</creatorcontrib><creatorcontrib>Gao, Siyang</creatorcontrib><creatorcontrib>Chen, Chun-Hung</creatorcontrib><creatorcontrib>Shi, Leyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Weiwei</au><au>Gao, Siyang</au><au>Chen, Chun-Hung</au><au>Shi, Leyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Sample Allocation Strategy for Partition-Based Random Search</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2014-01</date><risdate>2014</risdate><volume>11</volume><issue>1</issue><spage>177</spage><epage>186</epage><pages>177-186</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>Partition-based random search (PRS) provides a class of effective algorithms for global optimization. In each iteration of a PRS algorithm, the solution space is partitioned into subsets which are randomly sampled and evaluated. One subset is then determined to be the promising subset for further partitioning. In this paper, we propose the problem of allocating samples to each subset so that the samples are utilized most efficiently. Two types of sample allocation problems are discussed, with objectives of maximizing the probability of correctly selecting the promising subset (P{CSPS}) given a sample budget and minimizing the required sample size to achieve a satisfied level of P{CSPS}, respectively. An extreme value-based prospectiveness criterion is introduced and an asymptotically optimal solution to the two types of sample allocation problems is developed. The resulting optimal sample allocation strategy (OSAS) is an effective procedure for the existing PRS algorithms by intelligently utilizing the limited computing resources. Numerical tests confirm that OSAS is capable of increasing the P{CSPS} in each iteration and subsequently improving the performance of PRS algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASE.2013.2251881</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5955 |
ispartof | IEEE transactions on automation science and engineering, 2014-01, Vol.11 (1), p.177-186 |
issn | 1545-5955 1558-3783 |
language | eng |
recordid | cdi_ieee_primary_6497538 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Global optimization Numerical analysis optimal sample allocation Optimization partition-based random search Probability Sample size |
title | An Optimal Sample Allocation Strategy for Partition-Based Random Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Sample%20Allocation%20Strategy%20for%20Partition-Based%20Random%20Search&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Chen,%20Weiwei&rft.date=2014-01&rft.volume=11&rft.issue=1&rft.spage=177&rft.epage=186&rft.pages=177-186&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2013.2251881&rft_dat=%3Cproquest_RIE%3E1506367508%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477793596&rft_id=info:pmid/&rft_ieee_id=6497538&rfr_iscdi=true |