Data Complexity Measures and Nearest Neighbor Classifiers: A Practical Analysis for Meta-learning

The classifier accuracy is affected by the properties of the data sets used to train it. Nearest neighbor classifiers are known for being simple and accurate in several domains, but their behavior is strongly dependent on data complexity. On the other hand, there are data complexity measures which a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cavalcanti, G. D. C., Ren, T. I., Vale, B. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1069
container_issue
container_start_page 1065
container_title
container_volume 1
creator Cavalcanti, G. D. C.
Ren, T. I.
Vale, B. A.
description The classifier accuracy is affected by the properties of the data sets used to train it. Nearest neighbor classifiers are known for being simple and accurate in several domains, but their behavior is strongly dependent on data complexity. On the other hand, there are data complexity measures which aim to describe properties of the data sets. This work aims to show how data complexity measures can be efficiently used to predict the behavior of the Nearest Neighbor classifier. Seven data complexity measures and seventeen real datasets are used in the experimental study. Each data complexity measure is analyzed individually in order to find a relationship between its value and the accuracy of the classifier on a given dataset. No single measure used is good enough to predict the behavior of the Nearest Neighbor classifier. However, the combination of these measures provides a powerful tool to predict the accuracy of the Nearest Neighbor classifier.
doi_str_mv 10.1109/ICTAI.2012.150
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6495167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6495167</ieee_id><sourcerecordid>6495167</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-11747edecf7e57ef5b0230a21cecf07eb63f6584743782cc64523aa60f94fc993</originalsourceid><addsrcrecordid>eNotjMtOwzAURM1Loi3dsmHjH0i5fsfsovCq1AKLsq5u3etilKYoDhL9eyLB6oxGZ4axawEzIcDfzutVNZ9JEHImDJywMTjrjfbCyFM2ksqZAoR3Z2wstPMepHT2nI0ElLJQGvwlm-b8CQAClIHSjBjeY4-8Puy_GvpJ_ZEvCfN3R5lju-UvhEPsB6bdx-bQ8brBnFNM1OU7XvG3DkOfAja8arE55pR5HKwl9Vg0w7ZN7e6KXURsMk3_OWHvjw-r-rlYvD7N62pRJOFMXwjhtKMthejIOIpmA1IBShGGChxtrIrWlNpp5UoZgtVGKkQL0esYvFcTdvP3m4ho_dWlPXbHtdXeCOvUL6FTWIU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data Complexity Measures and Nearest Neighbor Classifiers: A Practical Analysis for Meta-learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cavalcanti, G. D. C. ; Ren, T. I. ; Vale, B. A.</creator><creatorcontrib>Cavalcanti, G. D. C. ; Ren, T. I. ; Vale, B. A.</creatorcontrib><description>The classifier accuracy is affected by the properties of the data sets used to train it. Nearest neighbor classifiers are known for being simple and accurate in several domains, but their behavior is strongly dependent on data complexity. On the other hand, there are data complexity measures which aim to describe properties of the data sets. This work aims to show how data complexity measures can be efficiently used to predict the behavior of the Nearest Neighbor classifier. Seven data complexity measures and seventeen real datasets are used in the experimental study. Each data complexity measure is analyzed individually in order to find a relationship between its value and the accuracy of the classifier on a given dataset. No single measure used is good enough to predict the behavior of the Nearest Neighbor classifier. However, the combination of these measures provides a powerful tool to predict the accuracy of the Nearest Neighbor classifier.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 1479902276</identifier><identifier>ISBN: 9781479902279</identifier><identifier>EISSN: 2375-0197</identifier><identifier>EISBN: 0769549152</identifier><identifier>EISBN: 9780769549156</identifier><identifier>DOI: 10.1109/ICTAI.2012.150</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Complexity theory ; Density measurement ; Error analysis ; Measurement uncertainty ; Pattern recognition ; Shape measurement</subject><ispartof>2012 IEEE 24th International Conference on Tools with Artificial Intelligence, 2012, Vol.1, p.1065-1069</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6495167$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6495167$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cavalcanti, G. D. C.</creatorcontrib><creatorcontrib>Ren, T. I.</creatorcontrib><creatorcontrib>Vale, B. A.</creatorcontrib><title>Data Complexity Measures and Nearest Neighbor Classifiers: A Practical Analysis for Meta-learning</title><title>2012 IEEE 24th International Conference on Tools with Artificial Intelligence</title><addtitle>TAI</addtitle><description>The classifier accuracy is affected by the properties of the data sets used to train it. Nearest neighbor classifiers are known for being simple and accurate in several domains, but their behavior is strongly dependent on data complexity. On the other hand, there are data complexity measures which aim to describe properties of the data sets. This work aims to show how data complexity measures can be efficiently used to predict the behavior of the Nearest Neighbor classifier. Seven data complexity measures and seventeen real datasets are used in the experimental study. Each data complexity measure is analyzed individually in order to find a relationship between its value and the accuracy of the classifier on a given dataset. No single measure used is good enough to predict the behavior of the Nearest Neighbor classifier. However, the combination of these measures provides a powerful tool to predict the accuracy of the Nearest Neighbor classifier.</description><subject>Accuracy</subject><subject>Complexity theory</subject><subject>Density measurement</subject><subject>Error analysis</subject><subject>Measurement uncertainty</subject><subject>Pattern recognition</subject><subject>Shape measurement</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>1479902276</isbn><isbn>9781479902279</isbn><isbn>0769549152</isbn><isbn>9780769549156</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwzAURM1Loi3dsmHjH0i5fsfsovCq1AKLsq5u3etilKYoDhL9eyLB6oxGZ4axawEzIcDfzutVNZ9JEHImDJywMTjrjfbCyFM2ksqZAoR3Z2wstPMepHT2nI0ElLJQGvwlm-b8CQAClIHSjBjeY4-8Puy_GvpJ_ZEvCfN3R5lju-UvhEPsB6bdx-bQ8brBnFNM1OU7XvG3DkOfAja8arE55pR5HKwl9Vg0w7ZN7e6KXURsMk3_OWHvjw-r-rlYvD7N62pRJOFMXwjhtKMthejIOIpmA1IBShGGChxtrIrWlNpp5UoZgtVGKkQL0esYvFcTdvP3m4ho_dWlPXbHtdXeCOvUL6FTWIU</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Cavalcanti, G. D. C.</creator><creator>Ren, T. I.</creator><creator>Vale, B. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201211</creationdate><title>Data Complexity Measures and Nearest Neighbor Classifiers: A Practical Analysis for Meta-learning</title><author>Cavalcanti, G. D. C. ; Ren, T. I. ; Vale, B. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-11747edecf7e57ef5b0230a21cecf07eb63f6584743782cc64523aa60f94fc993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Complexity theory</topic><topic>Density measurement</topic><topic>Error analysis</topic><topic>Measurement uncertainty</topic><topic>Pattern recognition</topic><topic>Shape measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Cavalcanti, G. D. C.</creatorcontrib><creatorcontrib>Ren, T. I.</creatorcontrib><creatorcontrib>Vale, B. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cavalcanti, G. D. C.</au><au>Ren, T. I.</au><au>Vale, B. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data Complexity Measures and Nearest Neighbor Classifiers: A Practical Analysis for Meta-learning</atitle><btitle>2012 IEEE 24th International Conference on Tools with Artificial Intelligence</btitle><stitle>TAI</stitle><date>2012-11</date><risdate>2012</risdate><volume>1</volume><spage>1065</spage><epage>1069</epage><pages>1065-1069</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>1479902276</isbn><isbn>9781479902279</isbn><eisbn>0769549152</eisbn><eisbn>9780769549156</eisbn><coden>IEEPAD</coden><abstract>The classifier accuracy is affected by the properties of the data sets used to train it. Nearest neighbor classifiers are known for being simple and accurate in several domains, but their behavior is strongly dependent on data complexity. On the other hand, there are data complexity measures which aim to describe properties of the data sets. This work aims to show how data complexity measures can be efficiently used to predict the behavior of the Nearest Neighbor classifier. Seven data complexity measures and seventeen real datasets are used in the experimental study. Each data complexity measure is analyzed individually in order to find a relationship between its value and the accuracy of the classifier on a given dataset. No single measure used is good enough to predict the behavior of the Nearest Neighbor classifier. However, the combination of these measures provides a powerful tool to predict the accuracy of the Nearest Neighbor classifier.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2012.150</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3409
ispartof 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, 2012, Vol.1, p.1065-1069
issn 1082-3409
2375-0197
language eng
recordid cdi_ieee_primary_6495167
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Complexity theory
Density measurement
Error analysis
Measurement uncertainty
Pattern recognition
Shape measurement
title Data Complexity Measures and Nearest Neighbor Classifiers: A Practical Analysis for Meta-learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20Complexity%20Measures%20and%20Nearest%20Neighbor%20Classifiers:%20A%20Practical%20Analysis%20for%20Meta-learning&rft.btitle=2012%20IEEE%2024th%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Cavalcanti,%20G.%20D.%20C.&rft.date=2012-11&rft.volume=1&rft.spage=1065&rft.epage=1069&rft.pages=1065-1069&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=1479902276&rft.isbn_list=9781479902279&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICTAI.2012.150&rft_dat=%3Cieee_6IE%3E6495167%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769549152&rft.eisbn_list=9780769549156&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6495167&rfr_iscdi=true