A Model Based Reinforcement Learning Approach Using On-Line Clustering

A significant issue in representing reinforcement learning agents in Markov decision processes is how to design efficient feature spaces in order to estimate optimal policy. This particular study addresses this challenge by proposing a compact framework that employs an on-line clustering approach fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tziortziotis, N., Blekas, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue
container_start_page 712
container_title
container_volume 1
creator Tziortziotis, N.
Blekas, K.
description A significant issue in representing reinforcement learning agents in Markov decision processes is how to design efficient feature spaces in order to estimate optimal policy. This particular study addresses this challenge by proposing a compact framework that employs an on-line clustering approach for constructing appropriate basis functions. Also, it performs a state-action trajectory analysis to gain valuable affinity information among clusters and estimate their transition dynamics. Value function approximation is used for policy evaluation in a least-squares temporal difference framework. The proposed method is evaluated in several simulated and real environments, where we took promising results.
doi_str_mv 10.1109/ICTAI.2012.101
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6495113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6495113</ieee_id><sourcerecordid>6495113</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-15c7a947948bc1fbcc6e3885317c3af8120ab872f39457298e680c3275e0202c3</originalsourceid><addsrcrecordid>eNotjr1OwzAURs2fRFq6srD4BVLuvY5jewxRC5WCKqF2rhz3BoLSJErCwNtTBNOnc4ajT4h7hCUiuMdNvss2SwKkJQJeiBmY1OnEoaZLEZEyOgZ05krMMDHOAZFJr0WEYClWCbhbsRjHTwBAUBqsjsQ6k6_dkRv55Ec-yjeu26obAp-4nWTBfmjr9l1mfT90PnzI_fiL2zYu6pZl3nyNEw9ndSduKt-MvPjfudivV7v8JS62z5s8K-IajZ5i1MF4d76W2DJgVYaQsrJWKzRB-coigS-toUq5RBtyllMLQZHRDAQU1Fw8_HVrZj70Q33yw_chTZxGVOoH3LJNLg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Model Based Reinforcement Learning Approach Using On-Line Clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tziortziotis, N. ; Blekas, K.</creator><creatorcontrib>Tziortziotis, N. ; Blekas, K.</creatorcontrib><description>A significant issue in representing reinforcement learning agents in Markov decision processes is how to design efficient feature spaces in order to estimate optimal policy. This particular study addresses this challenge by proposing a compact framework that employs an on-line clustering approach for constructing appropriate basis functions. Also, it performs a state-action trajectory analysis to gain valuable affinity information among clusters and estimate their transition dynamics. Value function approximation is used for policy evaluation in a least-squares temporal difference framework. The proposed method is evaluated in several simulated and real environments, where we took promising results.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 1479902276</identifier><identifier>ISBN: 9781479902279</identifier><identifier>EISSN: 2375-0197</identifier><identifier>EISBN: 0769549152</identifier><identifier>EISBN: 9780769549156</identifier><identifier>DOI: 10.1109/ICTAI.2012.101</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>clustering ; Clustering algorithms ; Equations ; Function approximation ; Kernel ; Mathematical model ; mixture models ; model-based reinforcement learning ; on-line EM ; Robot kinematics</subject><ispartof>2012 IEEE 24th International Conference on Tools with Artificial Intelligence, 2012, Vol.1, p.712-718</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6495113$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6495113$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tziortziotis, N.</creatorcontrib><creatorcontrib>Blekas, K.</creatorcontrib><title>A Model Based Reinforcement Learning Approach Using On-Line Clustering</title><title>2012 IEEE 24th International Conference on Tools with Artificial Intelligence</title><addtitle>TAI</addtitle><description>A significant issue in representing reinforcement learning agents in Markov decision processes is how to design efficient feature spaces in order to estimate optimal policy. This particular study addresses this challenge by proposing a compact framework that employs an on-line clustering approach for constructing appropriate basis functions. Also, it performs a state-action trajectory analysis to gain valuable affinity information among clusters and estimate their transition dynamics. Value function approximation is used for policy evaluation in a least-squares temporal difference framework. The proposed method is evaluated in several simulated and real environments, where we took promising results.</description><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Equations</subject><subject>Function approximation</subject><subject>Kernel</subject><subject>Mathematical model</subject><subject>mixture models</subject><subject>model-based reinforcement learning</subject><subject>on-line EM</subject><subject>Robot kinematics</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>1479902276</isbn><isbn>9781479902279</isbn><isbn>0769549152</isbn><isbn>9780769549156</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjr1OwzAURs2fRFq6srD4BVLuvY5jewxRC5WCKqF2rhz3BoLSJErCwNtTBNOnc4ajT4h7hCUiuMdNvss2SwKkJQJeiBmY1OnEoaZLEZEyOgZ05krMMDHOAZFJr0WEYClWCbhbsRjHTwBAUBqsjsQ6k6_dkRv55Ec-yjeu26obAp-4nWTBfmjr9l1mfT90PnzI_fiL2zYu6pZl3nyNEw9ndSduKt-MvPjfudivV7v8JS62z5s8K-IajZ5i1MF4d76W2DJgVYaQsrJWKzRB-coigS-toUq5RBtyllMLQZHRDAQU1Fw8_HVrZj70Q33yw_chTZxGVOoH3LJNLg</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Tziortziotis, N.</creator><creator>Blekas, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201211</creationdate><title>A Model Based Reinforcement Learning Approach Using On-Line Clustering</title><author>Tziortziotis, N. ; Blekas, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-15c7a947948bc1fbcc6e3885317c3af8120ab872f39457298e680c3275e0202c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Equations</topic><topic>Function approximation</topic><topic>Kernel</topic><topic>Mathematical model</topic><topic>mixture models</topic><topic>model-based reinforcement learning</topic><topic>on-line EM</topic><topic>Robot kinematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Tziortziotis, N.</creatorcontrib><creatorcontrib>Blekas, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tziortziotis, N.</au><au>Blekas, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Model Based Reinforcement Learning Approach Using On-Line Clustering</atitle><btitle>2012 IEEE 24th International Conference on Tools with Artificial Intelligence</btitle><stitle>TAI</stitle><date>2012-11</date><risdate>2012</risdate><volume>1</volume><spage>712</spage><epage>718</epage><pages>712-718</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>1479902276</isbn><isbn>9781479902279</isbn><eisbn>0769549152</eisbn><eisbn>9780769549156</eisbn><coden>IEEPAD</coden><abstract>A significant issue in representing reinforcement learning agents in Markov decision processes is how to design efficient feature spaces in order to estimate optimal policy. This particular study addresses this challenge by proposing a compact framework that employs an on-line clustering approach for constructing appropriate basis functions. Also, it performs a state-action trajectory analysis to gain valuable affinity information among clusters and estimate their transition dynamics. Value function approximation is used for policy evaluation in a least-squares temporal difference framework. The proposed method is evaluated in several simulated and real environments, where we took promising results.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2012.101</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3409
ispartof 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, 2012, Vol.1, p.712-718
issn 1082-3409
2375-0197
language eng
recordid cdi_ieee_primary_6495113
source IEEE Electronic Library (IEL) Conference Proceedings
subjects clustering
Clustering algorithms
Equations
Function approximation
Kernel
Mathematical model
mixture models
model-based reinforcement learning
on-line EM
Robot kinematics
title A Model Based Reinforcement Learning Approach Using On-Line Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Model%20Based%20Reinforcement%20Learning%20Approach%20Using%20On-Line%20Clustering&rft.btitle=2012%20IEEE%2024th%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Tziortziotis,%20N.&rft.date=2012-11&rft.volume=1&rft.spage=712&rft.epage=718&rft.pages=712-718&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=1479902276&rft.isbn_list=9781479902279&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICTAI.2012.101&rft_dat=%3Cieee_6IE%3E6495113%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769549152&rft.eisbn_list=9780769549156&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6495113&rfr_iscdi=true