Tracking a target using a cubature Kalman filter versus unbiased converted measurements
In tracking applications, the target dynamics are usually modeled using Cartesian coordinates, while the measurements obtained by a sensor are reported in polar coordinates. In this case, there are four filters for the target tracking: the Kalman filter with unbiased converted measurements (UCMKF),...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2133 |
---|---|
container_issue | |
container_start_page | 2130 |
container_title | |
container_volume | 3 |
creator | Liu, Zong-xiang Xie, Wei-xin Wang, Pin |
description | In tracking applications, the target dynamics are usually modeled using Cartesian coordinates, while the measurements obtained by a sensor are reported in polar coordinates. In this case, there are four filters for the target tracking: the Kalman filter with unbiased converted measurements (UCMKF), the extended Kalman filter (EKF), the unscented Kalman filter (UKF), and the cubature Kalman filter (CKF). A comparison of the UCMKF with the EKF shows that the UCMKF provides better estimation accuracy than the EKF, while the comparisons of the EKF, the UKF and the CKF show that the CKF provides the best performance for the target tracking among them. The UCMKF or the CKF, which one is better in the performance is a problem to be researched. To do this, a CKF for a nonlinear observation is proposed in which the three-degree spherical-radial rule is applied to solving the nonlinearity in the observation equation. The performance comparison between the UCMKF and the CKF has been done by simulations, which shows that the CKF provides better tracking performance than the UCMKF. |
doi_str_mv | 10.1109/ICoSP.2012.6492002 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6492002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6492002</ieee_id><sourcerecordid>6492002</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-165946731980a47fe1a2f74918658091841ccd837d8622bee26bac2d3491bc7c3</originalsourceid><addsrcrecordid>eNo1UNtKAzEUjKhgrf0BfckPbM05yebyKMVLsaBgxceSzZ4tq92tJFnBv3fF-jQXhmEYxi5BzAGEu14u9i_PcxSAc60cCoFH7ByUNhLBGXXMZs7Yf63dCZsgaFWUiHDGZim9CyEkWKulnrC3dfTho-233PPs45YyH9KfDEPl8xCJP_pd53vetLtMkX9RTEPiQ1-1PlHNw74frTyyjnwa8x31OV2w08bvEs0OOGWvd7frxUOxerpfLm5WRQumzAXo0v0uBWeFV6Yh8NgY5cDq0ooRFIRQW2lqqxErItSVD1jLMVIFE-SUXf31tkS0-Yxt5-P35vCL_AG96lTX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Tracking a target using a cubature Kalman filter versus unbiased converted measurements</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu, Zong-xiang ; Xie, Wei-xin ; Wang, Pin</creator><creatorcontrib>Liu, Zong-xiang ; Xie, Wei-xin ; Wang, Pin</creatorcontrib><description>In tracking applications, the target dynamics are usually modeled using Cartesian coordinates, while the measurements obtained by a sensor are reported in polar coordinates. In this case, there are four filters for the target tracking: the Kalman filter with unbiased converted measurements (UCMKF), the extended Kalman filter (EKF), the unscented Kalman filter (UKF), and the cubature Kalman filter (CKF). A comparison of the UCMKF with the EKF shows that the UCMKF provides better estimation accuracy than the EKF, while the comparisons of the EKF, the UKF and the CKF show that the CKF provides the best performance for the target tracking among them. The UCMKF or the CKF, which one is better in the performance is a problem to be researched. To do this, a CKF for a nonlinear observation is proposed in which the three-degree spherical-radial rule is applied to solving the nonlinearity in the observation equation. The performance comparison between the UCMKF and the CKF has been done by simulations, which shows that the CKF provides better tracking performance than the UCMKF.</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 9781467321969</identifier><identifier>ISBN: 1467321966</identifier><identifier>EISBN: 1467321974</identifier><identifier>EISBN: 9781467321952</identifier><identifier>EISBN: 1467321958</identifier><identifier>EISBN: 9781467321976</identifier><identifier>DOI: 10.1109/ICoSP.2012.6492002</identifier><language>eng</language><publisher>IEEE</publisher><subject>Azimuth ; Coordinate measuring machines ; cubature Kalman filter ; Estimation ; extended Kalman filter ; Kalman filters ; Mathematical model ; Radar tracking ; Target tracking ; unbiased converted measurements ; unscented Kalman filter</subject><ispartof>2012 IEEE 11th International Conference on Signal Processing, 2012, Vol.3, p.2130-2133</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6492002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6492002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Zong-xiang</creatorcontrib><creatorcontrib>Xie, Wei-xin</creatorcontrib><creatorcontrib>Wang, Pin</creatorcontrib><title>Tracking a target using a cubature Kalman filter versus unbiased converted measurements</title><title>2012 IEEE 11th International Conference on Signal Processing</title><addtitle>ICoSP</addtitle><description>In tracking applications, the target dynamics are usually modeled using Cartesian coordinates, while the measurements obtained by a sensor are reported in polar coordinates. In this case, there are four filters for the target tracking: the Kalman filter with unbiased converted measurements (UCMKF), the extended Kalman filter (EKF), the unscented Kalman filter (UKF), and the cubature Kalman filter (CKF). A comparison of the UCMKF with the EKF shows that the UCMKF provides better estimation accuracy than the EKF, while the comparisons of the EKF, the UKF and the CKF show that the CKF provides the best performance for the target tracking among them. The UCMKF or the CKF, which one is better in the performance is a problem to be researched. To do this, a CKF for a nonlinear observation is proposed in which the three-degree spherical-radial rule is applied to solving the nonlinearity in the observation equation. The performance comparison between the UCMKF and the CKF has been done by simulations, which shows that the CKF provides better tracking performance than the UCMKF.</description><subject>Azimuth</subject><subject>Coordinate measuring machines</subject><subject>cubature Kalman filter</subject><subject>Estimation</subject><subject>extended Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Radar tracking</subject><subject>Target tracking</subject><subject>unbiased converted measurements</subject><subject>unscented Kalman filter</subject><issn>2164-5221</issn><isbn>9781467321969</isbn><isbn>1467321966</isbn><isbn>1467321974</isbn><isbn>9781467321952</isbn><isbn>1467321958</isbn><isbn>9781467321976</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKAzEUjKhgrf0BfckPbM05yebyKMVLsaBgxceSzZ4tq92tJFnBv3fF-jQXhmEYxi5BzAGEu14u9i_PcxSAc60cCoFH7ByUNhLBGXXMZs7Yf63dCZsgaFWUiHDGZim9CyEkWKulnrC3dfTho-233PPs45YyH9KfDEPl8xCJP_pd53vetLtMkX9RTEPiQ1-1PlHNw74frTyyjnwa8x31OV2w08bvEs0OOGWvd7frxUOxerpfLm5WRQumzAXo0v0uBWeFV6Yh8NgY5cDq0ooRFIRQW2lqqxErItSVD1jLMVIFE-SUXf31tkS0-Yxt5-P35vCL_AG96lTX</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Liu, Zong-xiang</creator><creator>Xie, Wei-xin</creator><creator>Wang, Pin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Tracking a target using a cubature Kalman filter versus unbiased converted measurements</title><author>Liu, Zong-xiang ; Xie, Wei-xin ; Wang, Pin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-165946731980a47fe1a2f74918658091841ccd837d8622bee26bac2d3491bc7c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Azimuth</topic><topic>Coordinate measuring machines</topic><topic>cubature Kalman filter</topic><topic>Estimation</topic><topic>extended Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Radar tracking</topic><topic>Target tracking</topic><topic>unbiased converted measurements</topic><topic>unscented Kalman filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zong-xiang</creatorcontrib><creatorcontrib>Xie, Wei-xin</creatorcontrib><creatorcontrib>Wang, Pin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zong-xiang</au><au>Xie, Wei-xin</au><au>Wang, Pin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tracking a target using a cubature Kalman filter versus unbiased converted measurements</atitle><btitle>2012 IEEE 11th International Conference on Signal Processing</btitle><stitle>ICoSP</stitle><date>2012-10</date><risdate>2012</risdate><volume>3</volume><spage>2130</spage><epage>2133</epage><pages>2130-2133</pages><issn>2164-5221</issn><isbn>9781467321969</isbn><isbn>1467321966</isbn><eisbn>1467321974</eisbn><eisbn>9781467321952</eisbn><eisbn>1467321958</eisbn><eisbn>9781467321976</eisbn><abstract>In tracking applications, the target dynamics are usually modeled using Cartesian coordinates, while the measurements obtained by a sensor are reported in polar coordinates. In this case, there are four filters for the target tracking: the Kalman filter with unbiased converted measurements (UCMKF), the extended Kalman filter (EKF), the unscented Kalman filter (UKF), and the cubature Kalman filter (CKF). A comparison of the UCMKF with the EKF shows that the UCMKF provides better estimation accuracy than the EKF, while the comparisons of the EKF, the UKF and the CKF show that the CKF provides the best performance for the target tracking among them. The UCMKF or the CKF, which one is better in the performance is a problem to be researched. To do this, a CKF for a nonlinear observation is proposed in which the three-degree spherical-radial rule is applied to solving the nonlinearity in the observation equation. The performance comparison between the UCMKF and the CKF has been done by simulations, which shows that the CKF provides better tracking performance than the UCMKF.</abstract><pub>IEEE</pub><doi>10.1109/ICoSP.2012.6492002</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-5221 |
ispartof | 2012 IEEE 11th International Conference on Signal Processing, 2012, Vol.3, p.2130-2133 |
issn | 2164-5221 |
language | eng |
recordid | cdi_ieee_primary_6492002 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Azimuth Coordinate measuring machines cubature Kalman filter Estimation extended Kalman filter Kalman filters Mathematical model Radar tracking Target tracking unbiased converted measurements unscented Kalman filter |
title | Tracking a target using a cubature Kalman filter versus unbiased converted measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tracking%20a%20target%20using%20a%20cubature%20Kalman%20filter%20versus%20unbiased%20converted%20measurements&rft.btitle=2012%20IEEE%2011th%20International%20Conference%20on%20Signal%20Processing&rft.au=Liu,%20Zong-xiang&rft.date=2012-10&rft.volume=3&rft.spage=2130&rft.epage=2133&rft.pages=2130-2133&rft.issn=2164-5221&rft.isbn=9781467321969&rft.isbn_list=1467321966&rft_id=info:doi/10.1109/ICoSP.2012.6492002&rft_dat=%3Cieee_6IE%3E6492002%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467321974&rft.eisbn_list=9781467321952&rft.eisbn_list=1467321958&rft.eisbn_list=9781467321976&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6492002&rfr_iscdi=true |