A novel Mean Shift algorithm combined with Least Square approach and its application in target tracking

In this paper, a Mean Shift algorithm based on Least Square prediction is proposed. Based on the continuity of target's trace, the Least Square Mean Shift (LSMS) algorithm uses the result of Least Square prediction as the initial search center of Mean Shift algorithm. Then, Mean Shift is applie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yongwei Zheng, Huiyuan Wang, Qianxi Guo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue
container_start_page 1102
container_title
container_volume 2
creator Yongwei Zheng
Huiyuan Wang
Qianxi Guo
description In this paper, a Mean Shift algorithm based on Least Square prediction is proposed. Based on the continuity of target's trace, the Least Square Mean Shift (LSMS) algorithm uses the result of Least Square prediction as the initial search center of Mean Shift algorithm. Then, Mean Shift is applied to get the final target position. The computational complexity is reduced by limiting the number of iterations of Mean shift. Experimental results show that, compared with traditional Mean Shift algorithm, the proposed algorithm improves the real-time realization. Meanwhile, it has better performance on fast moving targets and non-linear moving targets.
doi_str_mv 10.1109/ICoSP.2012.6491770
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6491770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6491770</ieee_id><sourcerecordid>6491770</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a18d9631f902b6b82b720bc15c1b358f6db442f3832500566cc55233105f425e3</originalsourceid><addsrcrecordid>eNo1kM1OAjEYRWvUREReQDd9gcF-_e-SEEUSjCbomrSdzlAdOtipGt9ejbg6OWdxFxehSyBTAGKul_N-_TilBOhUcgNKkSN0DlwqRsEofowmRul_l-YEjShIXglK4QxNhuGFEMJAa8nkCLUznPqP0OH7YBNeb2NTsO3aPsey3WHf71xMocafP4pXwQ4Fr9_ebQ7Y7ve5t36LbapxLMNv6KK3JfYJx4SLzW0ouGTrX2NqL9BpY7shTA4co-fbm6f5XbV6WCzns1UVQYlSWdC1kQwaQ6iTTlOnKHEehAfHhG5k7TinDdOMCkKElN4LQRkDIhpORWBjdPW3G0MIm32OO5u_Noef2DeaXlmh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel Mean Shift algorithm combined with Least Square approach and its application in target tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yongwei Zheng ; Huiyuan Wang ; Qianxi Guo</creator><creatorcontrib>Yongwei Zheng ; Huiyuan Wang ; Qianxi Guo</creatorcontrib><description>In this paper, a Mean Shift algorithm based on Least Square prediction is proposed. Based on the continuity of target's trace, the Least Square Mean Shift (LSMS) algorithm uses the result of Least Square prediction as the initial search center of Mean Shift algorithm. Then, Mean Shift is applied to get the final target position. The computational complexity is reduced by limiting the number of iterations of Mean shift. Experimental results show that, compared with traditional Mean Shift algorithm, the proposed algorithm improves the real-time realization. Meanwhile, it has better performance on fast moving targets and non-linear moving targets.</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 9781467321969</identifier><identifier>ISBN: 1467321966</identifier><identifier>EISBN: 1467321974</identifier><identifier>EISBN: 9781467321952</identifier><identifier>EISBN: 1467321958</identifier><identifier>EISBN: 9781467321976</identifier><identifier>DOI: 10.1109/ICoSP.2012.6491770</identifier><language>eng</language><publisher>IEEE</publisher><subject>Least Square Method ; LSMS ; Mean Shift ; Target Tracking</subject><ispartof>2012 IEEE 11th International Conference on Signal Processing, 2012, Vol.2, p.1102-1105</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6491770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6491770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yongwei Zheng</creatorcontrib><creatorcontrib>Huiyuan Wang</creatorcontrib><creatorcontrib>Qianxi Guo</creatorcontrib><title>A novel Mean Shift algorithm combined with Least Square approach and its application in target tracking</title><title>2012 IEEE 11th International Conference on Signal Processing</title><addtitle>ICoSP</addtitle><description>In this paper, a Mean Shift algorithm based on Least Square prediction is proposed. Based on the continuity of target's trace, the Least Square Mean Shift (LSMS) algorithm uses the result of Least Square prediction as the initial search center of Mean Shift algorithm. Then, Mean Shift is applied to get the final target position. The computational complexity is reduced by limiting the number of iterations of Mean shift. Experimental results show that, compared with traditional Mean Shift algorithm, the proposed algorithm improves the real-time realization. Meanwhile, it has better performance on fast moving targets and non-linear moving targets.</description><subject>Least Square Method</subject><subject>LSMS</subject><subject>Mean Shift</subject><subject>Target Tracking</subject><issn>2164-5221</issn><isbn>9781467321969</isbn><isbn>1467321966</isbn><isbn>1467321974</isbn><isbn>9781467321952</isbn><isbn>1467321958</isbn><isbn>9781467321976</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1OAjEYRWvUREReQDd9gcF-_e-SEEUSjCbomrSdzlAdOtipGt9ejbg6OWdxFxehSyBTAGKul_N-_TilBOhUcgNKkSN0DlwqRsEofowmRul_l-YEjShIXglK4QxNhuGFEMJAa8nkCLUznPqP0OH7YBNeb2NTsO3aPsey3WHf71xMocafP4pXwQ4Fr9_ebQ7Y7ve5t36LbapxLMNv6KK3JfYJx4SLzW0ouGTrX2NqL9BpY7shTA4co-fbm6f5XbV6WCzns1UVQYlSWdC1kQwaQ6iTTlOnKHEehAfHhG5k7TinDdOMCkKElN4LQRkDIhpORWBjdPW3G0MIm32OO5u_Noef2DeaXlmh</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Yongwei Zheng</creator><creator>Huiyuan Wang</creator><creator>Qianxi Guo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>A novel Mean Shift algorithm combined with Least Square approach and its application in target tracking</title><author>Yongwei Zheng ; Huiyuan Wang ; Qianxi Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a18d9631f902b6b82b720bc15c1b358f6db442f3832500566cc55233105f425e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Least Square Method</topic><topic>LSMS</topic><topic>Mean Shift</topic><topic>Target Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Yongwei Zheng</creatorcontrib><creatorcontrib>Huiyuan Wang</creatorcontrib><creatorcontrib>Qianxi Guo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongwei Zheng</au><au>Huiyuan Wang</au><au>Qianxi Guo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel Mean Shift algorithm combined with Least Square approach and its application in target tracking</atitle><btitle>2012 IEEE 11th International Conference on Signal Processing</btitle><stitle>ICoSP</stitle><date>2012-10</date><risdate>2012</risdate><volume>2</volume><spage>1102</spage><epage>1105</epage><pages>1102-1105</pages><issn>2164-5221</issn><isbn>9781467321969</isbn><isbn>1467321966</isbn><eisbn>1467321974</eisbn><eisbn>9781467321952</eisbn><eisbn>1467321958</eisbn><eisbn>9781467321976</eisbn><abstract>In this paper, a Mean Shift algorithm based on Least Square prediction is proposed. Based on the continuity of target's trace, the Least Square Mean Shift (LSMS) algorithm uses the result of Least Square prediction as the initial search center of Mean Shift algorithm. Then, Mean Shift is applied to get the final target position. The computational complexity is reduced by limiting the number of iterations of Mean shift. Experimental results show that, compared with traditional Mean Shift algorithm, the proposed algorithm improves the real-time realization. Meanwhile, it has better performance on fast moving targets and non-linear moving targets.</abstract><pub>IEEE</pub><doi>10.1109/ICoSP.2012.6491770</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-5221
ispartof 2012 IEEE 11th International Conference on Signal Processing, 2012, Vol.2, p.1102-1105
issn 2164-5221
language eng
recordid cdi_ieee_primary_6491770
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Least Square Method
LSMS
Mean Shift
Target Tracking
title A novel Mean Shift algorithm combined with Least Square approach and its application in target tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20Mean%20Shift%20algorithm%20combined%20with%20Least%20Square%20approach%20and%20its%20application%20in%20target%20tracking&rft.btitle=2012%20IEEE%2011th%20International%20Conference%20on%20Signal%20Processing&rft.au=Yongwei%20Zheng&rft.date=2012-10&rft.volume=2&rft.spage=1102&rft.epage=1105&rft.pages=1102-1105&rft.issn=2164-5221&rft.isbn=9781467321969&rft.isbn_list=1467321966&rft_id=info:doi/10.1109/ICoSP.2012.6491770&rft_dat=%3Cieee_6IE%3E6491770%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467321974&rft.eisbn_list=9781467321952&rft.eisbn_list=1467321958&rft.eisbn_list=9781467321976&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6491770&rfr_iscdi=true