Advanced Algorithms for Wind Turbine Power Curve Modeling
A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. T...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on sustainable energy 2013-07, Vol.4 (3), p.827-835 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 835 |
---|---|
container_issue | 3 |
container_start_page | 827 |
container_title | IEEE transactions on sustainable energy |
container_volume | 4 |
creator | Lydia, M. Selvakumar, A. Immanuel Kumar, S. Suresh Kumar, G. Edwin Prem |
description | A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. This paper presents the development of parametric and nonparametric models of wind turbine power curves. Parametric models of the wind turbine power curve have been developed using four and five parameter logistic expressions. The parameters of these expressions have been solved using advanced algorithms like genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization (PSO), and differential evolution (DE). Nonparametric models have been evolved using algorithms like neural networks, fuzzy c-means clustering, and data mining. The modeling of wind turbine power curve is done using five sets of data; one is a statistically generated set and the others are real-time data sets. The results obtained have been compared using suitable performance metrics and the best method for modeling of the power curve has been obtained. |
doi_str_mv | 10.1109/TSTE.2013.2247641 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6491505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6491505</ieee_id><sourcerecordid>3931736791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-ab16759528b76c6bd23ee4e3cb41f101e31658e1a181149b7e3d44216b1264913</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-APGy4Dl1Z2ez6R5LqR9QUTDicckmk5rSJnU3qfjvTWjpXN45vB_wMHYLYgogzEP6kS6nUgBOpVSJVnDBRmCUiVBgcnn-pblmkxA2oj9E1ChGzMyLQ1bnVPD5dt34qv3eBV42nn9VdcHTzruqJv7e_JLni84fiL82BW2ren3DrspsG2hy0jH7fFymi-do9fb0spivohylbqPMgU5iE8uZS3SuXSGRSBHmTkEJAghBxzOCDGYAyriEsFBKgnYgtTKAY3Z_7N375qej0NpN0_m6n7TQF6NKDAwuOLpy34TgqbR7X-0y_2dB2AGSHSDZAZI9Qeozd8dMRURn_zAaixj_ATGKYCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759347911</pqid></control><display><type>article</type><title>Advanced Algorithms for Wind Turbine Power Curve Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Lydia, M. ; Selvakumar, A. Immanuel ; Kumar, S. Suresh ; Kumar, G. Edwin Prem</creator><creatorcontrib>Lydia, M. ; Selvakumar, A. Immanuel ; Kumar, S. Suresh ; Kumar, G. Edwin Prem</creatorcontrib><description>A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. This paper presents the development of parametric and nonparametric models of wind turbine power curves. Parametric models of the wind turbine power curve have been developed using four and five parameter logistic expressions. The parameters of these expressions have been solved using advanced algorithms like genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization (PSO), and differential evolution (DE). Nonparametric models have been evolved using algorithms like neural networks, fuzzy c-means clustering, and data mining. The modeling of wind turbine power curve is done using five sets of data; one is a statistically generated set and the others are real-time data sets. The results obtained have been compared using suitable performance metrics and the best method for modeling of the power curve has been obtained.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2013.2247641</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Data mining ; Data models ; differential evolution (DE) ; Logistics ; particle swarm optimization (PSO) ; power curve modeling ; Sociology ; Statistics ; Turbines ; Vectors ; Wind turbines</subject><ispartof>IEEE transactions on sustainable energy, 2013-07, Vol.4 (3), p.827-835</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-ab16759528b76c6bd23ee4e3cb41f101e31658e1a181149b7e3d44216b1264913</citedby><cites>FETCH-LOGICAL-c326t-ab16759528b76c6bd23ee4e3cb41f101e31658e1a181149b7e3d44216b1264913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6491505$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6491505$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lydia, M.</creatorcontrib><creatorcontrib>Selvakumar, A. Immanuel</creatorcontrib><creatorcontrib>Kumar, S. Suresh</creatorcontrib><creatorcontrib>Kumar, G. Edwin Prem</creatorcontrib><title>Advanced Algorithms for Wind Turbine Power Curve Modeling</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. This paper presents the development of parametric and nonparametric models of wind turbine power curves. Parametric models of the wind turbine power curve have been developed using four and five parameter logistic expressions. The parameters of these expressions have been solved using advanced algorithms like genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization (PSO), and differential evolution (DE). Nonparametric models have been evolved using algorithms like neural networks, fuzzy c-means clustering, and data mining. The modeling of wind turbine power curve is done using five sets of data; one is a statistically generated set and the others are real-time data sets. The results obtained have been compared using suitable performance metrics and the best method for modeling of the power curve has been obtained.</description><subject>Algorithms</subject><subject>Data mining</subject><subject>Data models</subject><subject>differential evolution (DE)</subject><subject>Logistics</subject><subject>particle swarm optimization (PSO)</subject><subject>power curve modeling</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Turbines</subject><subject>Vectors</subject><subject>Wind turbines</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsNT-APGy4Dl1Z2ez6R5LqR9QUTDicckmk5rSJnU3qfjvTWjpXN45vB_wMHYLYgogzEP6kS6nUgBOpVSJVnDBRmCUiVBgcnn-pblmkxA2oj9E1ChGzMyLQ1bnVPD5dt34qv3eBV42nn9VdcHTzruqJv7e_JLni84fiL82BW2ren3DrspsG2hy0jH7fFymi-do9fb0spivohylbqPMgU5iE8uZS3SuXSGRSBHmTkEJAghBxzOCDGYAyriEsFBKgnYgtTKAY3Z_7N375qej0NpN0_m6n7TQF6NKDAwuOLpy34TgqbR7X-0y_2dB2AGSHSDZAZI9Qeozd8dMRURn_zAaixj_ATGKYCg</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Lydia, M.</creator><creator>Selvakumar, A. Immanuel</creator><creator>Kumar, S. Suresh</creator><creator>Kumar, G. Edwin Prem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20130701</creationdate><title>Advanced Algorithms for Wind Turbine Power Curve Modeling</title><author>Lydia, M. ; Selvakumar, A. Immanuel ; Kumar, S. Suresh ; Kumar, G. Edwin Prem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-ab16759528b76c6bd23ee4e3cb41f101e31658e1a181149b7e3d44216b1264913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Data mining</topic><topic>Data models</topic><topic>differential evolution (DE)</topic><topic>Logistics</topic><topic>particle swarm optimization (PSO)</topic><topic>power curve modeling</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Turbines</topic><topic>Vectors</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lydia, M.</creatorcontrib><creatorcontrib>Selvakumar, A. Immanuel</creatorcontrib><creatorcontrib>Kumar, S. Suresh</creatorcontrib><creatorcontrib>Kumar, G. Edwin Prem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lydia, M.</au><au>Selvakumar, A. Immanuel</au><au>Kumar, S. Suresh</au><au>Kumar, G. Edwin Prem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Algorithms for Wind Turbine Power Curve Modeling</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>4</volume><issue>3</issue><spage>827</spage><epage>835</epage><pages>827-835</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. This paper presents the development of parametric and nonparametric models of wind turbine power curves. Parametric models of the wind turbine power curve have been developed using four and five parameter logistic expressions. The parameters of these expressions have been solved using advanced algorithms like genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization (PSO), and differential evolution (DE). Nonparametric models have been evolved using algorithms like neural networks, fuzzy c-means clustering, and data mining. The modeling of wind turbine power curve is done using five sets of data; one is a statistically generated set and the others are real-time data sets. The results obtained have been compared using suitable performance metrics and the best method for modeling of the power curve has been obtained.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2013.2247641</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3029 |
ispartof | IEEE transactions on sustainable energy, 2013-07, Vol.4 (3), p.827-835 |
issn | 1949-3029 1949-3037 |
language | eng |
recordid | cdi_ieee_primary_6491505 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Data mining Data models differential evolution (DE) Logistics particle swarm optimization (PSO) power curve modeling Sociology Statistics Turbines Vectors Wind turbines |
title | Advanced Algorithms for Wind Turbine Power Curve Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Algorithms%20for%20Wind%20Turbine%20Power%20Curve%20Modeling&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Lydia,%20M.&rft.date=2013-07-01&rft.volume=4&rft.issue=3&rft.spage=827&rft.epage=835&rft.pages=827-835&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2013.2247641&rft_dat=%3Cproquest_RIE%3E3931736791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759347911&rft_id=info:pmid/&rft_ieee_id=6491505&rfr_iscdi=true |