Advanced Algorithms for Wind Turbine Power Curve Modeling

A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2013-07, Vol.4 (3), p.827-835
Hauptverfasser: Lydia, M., Selvakumar, A. Immanuel, Kumar, S. Suresh, Kumar, G. Edwin Prem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 835
container_issue 3
container_start_page 827
container_title IEEE transactions on sustainable energy
container_volume 4
creator Lydia, M.
Selvakumar, A. Immanuel
Kumar, S. Suresh
Kumar, G. Edwin Prem
description A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. This paper presents the development of parametric and nonparametric models of wind turbine power curves. Parametric models of the wind turbine power curve have been developed using four and five parameter logistic expressions. The parameters of these expressions have been solved using advanced algorithms like genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization (PSO), and differential evolution (DE). Nonparametric models have been evolved using algorithms like neural networks, fuzzy c-means clustering, and data mining. The modeling of wind turbine power curve is done using five sets of data; one is a statistically generated set and the others are real-time data sets. The results obtained have been compared using suitable performance metrics and the best method for modeling of the power curve has been obtained.
doi_str_mv 10.1109/TSTE.2013.2247641
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6491505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6491505</ieee_id><sourcerecordid>3931736791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-ab16759528b76c6bd23ee4e3cb41f101e31658e1a181149b7e3d44216b1264913</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-APGy4Dl1Z2ez6R5LqR9QUTDicckmk5rSJnU3qfjvTWjpXN45vB_wMHYLYgogzEP6kS6nUgBOpVSJVnDBRmCUiVBgcnn-pblmkxA2oj9E1ChGzMyLQ1bnVPD5dt34qv3eBV42nn9VdcHTzruqJv7e_JLni84fiL82BW2ren3DrspsG2hy0jH7fFymi-do9fb0spivohylbqPMgU5iE8uZS3SuXSGRSBHmTkEJAghBxzOCDGYAyriEsFBKgnYgtTKAY3Z_7N375qej0NpN0_m6n7TQF6NKDAwuOLpy34TgqbR7X-0y_2dB2AGSHSDZAZI9Qeozd8dMRURn_zAaixj_ATGKYCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759347911</pqid></control><display><type>article</type><title>Advanced Algorithms for Wind Turbine Power Curve Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Lydia, M. ; Selvakumar, A. Immanuel ; Kumar, S. Suresh ; Kumar, G. Edwin Prem</creator><creatorcontrib>Lydia, M. ; Selvakumar, A. Immanuel ; Kumar, S. Suresh ; Kumar, G. Edwin Prem</creatorcontrib><description>A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. This paper presents the development of parametric and nonparametric models of wind turbine power curves. Parametric models of the wind turbine power curve have been developed using four and five parameter logistic expressions. The parameters of these expressions have been solved using advanced algorithms like genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization (PSO), and differential evolution (DE). Nonparametric models have been evolved using algorithms like neural networks, fuzzy c-means clustering, and data mining. The modeling of wind turbine power curve is done using five sets of data; one is a statistically generated set and the others are real-time data sets. The results obtained have been compared using suitable performance metrics and the best method for modeling of the power curve has been obtained.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2013.2247641</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Data mining ; Data models ; differential evolution (DE) ; Logistics ; particle swarm optimization (PSO) ; power curve modeling ; Sociology ; Statistics ; Turbines ; Vectors ; Wind turbines</subject><ispartof>IEEE transactions on sustainable energy, 2013-07, Vol.4 (3), p.827-835</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-ab16759528b76c6bd23ee4e3cb41f101e31658e1a181149b7e3d44216b1264913</citedby><cites>FETCH-LOGICAL-c326t-ab16759528b76c6bd23ee4e3cb41f101e31658e1a181149b7e3d44216b1264913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6491505$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6491505$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lydia, M.</creatorcontrib><creatorcontrib>Selvakumar, A. Immanuel</creatorcontrib><creatorcontrib>Kumar, S. Suresh</creatorcontrib><creatorcontrib>Kumar, G. Edwin Prem</creatorcontrib><title>Advanced Algorithms for Wind Turbine Power Curve Modeling</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. This paper presents the development of parametric and nonparametric models of wind turbine power curves. Parametric models of the wind turbine power curve have been developed using four and five parameter logistic expressions. The parameters of these expressions have been solved using advanced algorithms like genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization (PSO), and differential evolution (DE). Nonparametric models have been evolved using algorithms like neural networks, fuzzy c-means clustering, and data mining. The modeling of wind turbine power curve is done using five sets of data; one is a statistically generated set and the others are real-time data sets. The results obtained have been compared using suitable performance metrics and the best method for modeling of the power curve has been obtained.</description><subject>Algorithms</subject><subject>Data mining</subject><subject>Data models</subject><subject>differential evolution (DE)</subject><subject>Logistics</subject><subject>particle swarm optimization (PSO)</subject><subject>power curve modeling</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Turbines</subject><subject>Vectors</subject><subject>Wind turbines</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsNT-APGy4Dl1Z2ez6R5LqR9QUTDicckmk5rSJnU3qfjvTWjpXN45vB_wMHYLYgogzEP6kS6nUgBOpVSJVnDBRmCUiVBgcnn-pblmkxA2oj9E1ChGzMyLQ1bnVPD5dt34qv3eBV42nn9VdcHTzruqJv7e_JLni84fiL82BW2ren3DrspsG2hy0jH7fFymi-do9fb0spivohylbqPMgU5iE8uZS3SuXSGRSBHmTkEJAghBxzOCDGYAyriEsFBKgnYgtTKAY3Z_7N375qej0NpN0_m6n7TQF6NKDAwuOLpy34TgqbR7X-0y_2dB2AGSHSDZAZI9Qeozd8dMRURn_zAaixj_ATGKYCg</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Lydia, M.</creator><creator>Selvakumar, A. Immanuel</creator><creator>Kumar, S. Suresh</creator><creator>Kumar, G. Edwin Prem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20130701</creationdate><title>Advanced Algorithms for Wind Turbine Power Curve Modeling</title><author>Lydia, M. ; Selvakumar, A. Immanuel ; Kumar, S. Suresh ; Kumar, G. Edwin Prem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-ab16759528b76c6bd23ee4e3cb41f101e31658e1a181149b7e3d44216b1264913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Data mining</topic><topic>Data models</topic><topic>differential evolution (DE)</topic><topic>Logistics</topic><topic>particle swarm optimization (PSO)</topic><topic>power curve modeling</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Turbines</topic><topic>Vectors</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lydia, M.</creatorcontrib><creatorcontrib>Selvakumar, A. Immanuel</creatorcontrib><creatorcontrib>Kumar, S. Suresh</creatorcontrib><creatorcontrib>Kumar, G. Edwin Prem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lydia, M.</au><au>Selvakumar, A. Immanuel</au><au>Kumar, S. Suresh</au><au>Kumar, G. Edwin Prem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Algorithms for Wind Turbine Power Curve Modeling</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>4</volume><issue>3</issue><spage>827</spage><epage>835</epage><pages>827-835</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. This paper presents the development of parametric and nonparametric models of wind turbine power curves. Parametric models of the wind turbine power curve have been developed using four and five parameter logistic expressions. The parameters of these expressions have been solved using advanced algorithms like genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization (PSO), and differential evolution (DE). Nonparametric models have been evolved using algorithms like neural networks, fuzzy c-means clustering, and data mining. The modeling of wind turbine power curve is done using five sets of data; one is a statistically generated set and the others are real-time data sets. The results obtained have been compared using suitable performance metrics and the best method for modeling of the power curve has been obtained.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2013.2247641</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2013-07, Vol.4 (3), p.827-835
issn 1949-3029
1949-3037
language eng
recordid cdi_ieee_primary_6491505
source IEEE Electronic Library (IEL)
subjects Algorithms
Data mining
Data models
differential evolution (DE)
Logistics
particle swarm optimization (PSO)
power curve modeling
Sociology
Statistics
Turbines
Vectors
Wind turbines
title Advanced Algorithms for Wind Turbine Power Curve Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Algorithms%20for%20Wind%20Turbine%20Power%20Curve%20Modeling&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Lydia,%20M.&rft.date=2013-07-01&rft.volume=4&rft.issue=3&rft.spage=827&rft.epage=835&rft.pages=827-835&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2013.2247641&rft_dat=%3Cproquest_RIE%3E3931736791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759347911&rft_id=info:pmid/&rft_ieee_id=6491505&rfr_iscdi=true