STLF in the user-side for an iEMS based on evolutionary training of Adaptive Networks

It is a fact that the short-term load forecasting (STLF) in the user side is growing interest. Consequently, intelligent energy management systems (iEMSs) are including this capability in order to take autonomous decisions. In this context, this paper presents a new STLF scheme based on Adaptative N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cardenas, J. J., Giacometto, F., Garcia, A., Romeral, J. L.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Cardenas, J. J.
Giacometto, F.
Garcia, A.
Romeral, J. L.
description It is a fact that the short-term load forecasting (STLF) in the user side is growing interest. Consequently, intelligent energy management systems (iEMSs) are including this capability in order to take autonomous decisions. In this context, this paper presents a new STLF scheme based on Adaptative Networks Fuzzy Inference Systems (ANFIS). This ANFIS has an exponential output membership functions (e-ANFIS) and has been trained by means of a novel evolutionary training algorithm (ETA). Due to the computational burden required by ETA, parallel computing was used to eliminate this problem especially for embedded applications. This new scheme has been tested with real data from an automotive factory and it shows better results in comparison with typical adaptative network structures (neural network and ANFIS).
doi_str_mv 10.1109/ETFA.2012.6489626
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6489626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6489626</ieee_id><sourcerecordid>6489626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-126e6a05bbab04538ac464d5ab21898277ccdfd8bf5a15c4e8154387323713b13</originalsourceid><addsrcrecordid>eNpVkM1KAzEURuMfWGofQNzcF5iam_8sS2lVqLpouy7JzB2N1pkymSq-vQWL4OpbHDgcPsaukY8Rub-dreaTseAoxkY5b4Q5YSNvHSpjpbLSilM2QK9Mwa32Z_-Ydud_TPFLNsr5jXN-0BqvxICtl6vFHFID_SvBPlNX5FQR1G0HoYE0e1xCDJkqaBugz3a771PbhO4b-i6kJjUv0NYwqcKuT58ET9R_td17vmIXddhmGh13yNbz2Wp6Xyye7x6mk0WR0Oq-QGHIBK5jDJErLV0olVGVDlGg805YW5ZVXblY64C6VORQK-msFNKijCiH7ObXm4hos-vSxyFtczxJ_gC2i1UU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>STLF in the user-side for an iEMS based on evolutionary training of Adaptive Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cardenas, J. J. ; Giacometto, F. ; Garcia, A. ; Romeral, J. L.</creator><creatorcontrib>Cardenas, J. J. ; Giacometto, F. ; Garcia, A. ; Romeral, J. L.</creatorcontrib><description>It is a fact that the short-term load forecasting (STLF) in the user side is growing interest. Consequently, intelligent energy management systems (iEMSs) are including this capability in order to take autonomous decisions. In this context, this paper presents a new STLF scheme based on Adaptative Networks Fuzzy Inference Systems (ANFIS). This ANFIS has an exponential output membership functions (e-ANFIS) and has been trained by means of a novel evolutionary training algorithm (ETA). Due to the computational burden required by ETA, parallel computing was used to eliminate this problem especially for embedded applications. This new scheme has been tested with real data from an automotive factory and it shows better results in comparison with typical adaptative network structures (neural network and ANFIS).</description><identifier>ISSN: 1946-0740</identifier><identifier>ISBN: 9781467347358</identifier><identifier>ISBN: 1467347353</identifier><identifier>EISSN: 1946-0759</identifier><identifier>EISBN: 9781467347372</identifier><identifier>EISBN: 146734737X</identifier><identifier>EISBN: 1467347361</identifier><identifier>EISBN: 9781467347365</identifier><identifier>DOI: 10.1109/ETFA.2012.6489626</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies &amp; Factory Automation (ETFA 2012), 2012, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6489626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6489626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cardenas, J. J.</creatorcontrib><creatorcontrib>Giacometto, F.</creatorcontrib><creatorcontrib>Garcia, A.</creatorcontrib><creatorcontrib>Romeral, J. L.</creatorcontrib><title>STLF in the user-side for an iEMS based on evolutionary training of Adaptive Networks</title><title>Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies &amp; Factory Automation (ETFA 2012)</title><addtitle>ETFA</addtitle><description>It is a fact that the short-term load forecasting (STLF) in the user side is growing interest. Consequently, intelligent energy management systems (iEMSs) are including this capability in order to take autonomous decisions. In this context, this paper presents a new STLF scheme based on Adaptative Networks Fuzzy Inference Systems (ANFIS). This ANFIS has an exponential output membership functions (e-ANFIS) and has been trained by means of a novel evolutionary training algorithm (ETA). Due to the computational burden required by ETA, parallel computing was used to eliminate this problem especially for embedded applications. This new scheme has been tested with real data from an automotive factory and it shows better results in comparison with typical adaptative network structures (neural network and ANFIS).</description><issn>1946-0740</issn><issn>1946-0759</issn><isbn>9781467347358</isbn><isbn>1467347353</isbn><isbn>9781467347372</isbn><isbn>146734737X</isbn><isbn>1467347361</isbn><isbn>9781467347365</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KAzEURuMfWGofQNzcF5iam_8sS2lVqLpouy7JzB2N1pkymSq-vQWL4OpbHDgcPsaukY8Rub-dreaTseAoxkY5b4Q5YSNvHSpjpbLSilM2QK9Mwa32Z_-Ydud_TPFLNsr5jXN-0BqvxICtl6vFHFID_SvBPlNX5FQR1G0HoYE0e1xCDJkqaBugz3a771PbhO4b-i6kJjUv0NYwqcKuT58ET9R_td17vmIXddhmGh13yNbz2Wp6Xyye7x6mk0WR0Oq-QGHIBK5jDJErLV0olVGVDlGg805YW5ZVXblY64C6VORQK-msFNKijCiH7ObXm4hos-vSxyFtczxJ_gC2i1UU</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Cardenas, J. J.</creator><creator>Giacometto, F.</creator><creator>Garcia, A.</creator><creator>Romeral, J. L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>STLF in the user-side for an iEMS based on evolutionary training of Adaptive Networks</title><author>Cardenas, J. J. ; Giacometto, F. ; Garcia, A. ; Romeral, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-126e6a05bbab04538ac464d5ab21898277ccdfd8bf5a15c4e8154387323713b13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Cardenas, J. J.</creatorcontrib><creatorcontrib>Giacometto, F.</creatorcontrib><creatorcontrib>Garcia, A.</creatorcontrib><creatorcontrib>Romeral, J. L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cardenas, J. J.</au><au>Giacometto, F.</au><au>Garcia, A.</au><au>Romeral, J. L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>STLF in the user-side for an iEMS based on evolutionary training of Adaptive Networks</atitle><btitle>Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies &amp; Factory Automation (ETFA 2012)</btitle><stitle>ETFA</stitle><date>2012-09</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1946-0740</issn><eissn>1946-0759</eissn><isbn>9781467347358</isbn><isbn>1467347353</isbn><eisbn>9781467347372</eisbn><eisbn>146734737X</eisbn><eisbn>1467347361</eisbn><eisbn>9781467347365</eisbn><abstract>It is a fact that the short-term load forecasting (STLF) in the user side is growing interest. Consequently, intelligent energy management systems (iEMSs) are including this capability in order to take autonomous decisions. In this context, this paper presents a new STLF scheme based on Adaptative Networks Fuzzy Inference Systems (ANFIS). This ANFIS has an exponential output membership functions (e-ANFIS) and has been trained by means of a novel evolutionary training algorithm (ETA). Due to the computational burden required by ETA, parallel computing was used to eliminate this problem especially for embedded applications. This new scheme has been tested with real data from an automotive factory and it shows better results in comparison with typical adaptative network structures (neural network and ANFIS).</abstract><pub>IEEE</pub><doi>10.1109/ETFA.2012.6489626</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1946-0740
ispartof Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012), 2012, p.1-8
issn 1946-0740
1946-0759
language eng
recordid cdi_ieee_primary_6489626
source IEEE Electronic Library (IEL) Conference Proceedings
title STLF in the user-side for an iEMS based on evolutionary training of Adaptive Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=STLF%20in%20the%20user-side%20for%20an%20iEMS%20based%20on%20evolutionary%20training%20of%20Adaptive%20Networks&rft.btitle=Proceedings%20of%202012%20IEEE%2017th%20International%20Conference%20on%20Emerging%20Technologies%20&%20Factory%20Automation%20(ETFA%202012)&rft.au=Cardenas,%20J.%20J.&rft.date=2012-09&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1946-0740&rft.eissn=1946-0759&rft.isbn=9781467347358&rft.isbn_list=1467347353&rft_id=info:doi/10.1109/ETFA.2012.6489626&rft_dat=%3Cieee_6IE%3E6489626%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467347372&rft.eisbn_list=146734737X&rft.eisbn_list=1467347361&rft.eisbn_list=9781467347365&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6489626&rfr_iscdi=true