Exploiting sparsity in stranded hidden Markov models for automatic speech recognition

We have recently proposed the stranded HMM to achieve a more accurate representation of heterogeneous data. As opposed to the regular Gaussian mixture HMM, the stranded HMM explicitly models the relationships among the mixture components. The transitions among mixture components encode possible traj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yong Zhao, Biing-Hwang Juang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1625
container_issue
container_start_page 1623
container_title
container_volume
creator Yong Zhao
Biing-Hwang Juang
description We have recently proposed the stranded HMM to achieve a more accurate representation of heterogeneous data. As opposed to the regular Gaussian mixture HMM, the stranded HMM explicitly models the relationships among the mixture components. The transitions among mixture components encode possible trajectories of acoustic features for speech units. Accurately representing the underlying transition structure is crucial for the stranded HMM to produce an optimal recognition performance. In this paper, we propose to learn the stranded HMM structure by imposing sparsity constraints. In particular, entropic priors are incorporated in the maximum a posteriori (MAP) estimation of the mixture transition matrices. The experimental results showed that a significant improvement in model sparsity can be obtained with a slight sacrifice of the recognition accuracy.
doi_str_mv 10.1109/ACSSC.2012.6489305
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6489305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6489305</ieee_id><sourcerecordid>6489305</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3be35857221e99fea1dd34c25e42e298378316e9eab12313e75243a5e1a987d53</originalsourceid><addsrcrecordid>eNot0M1OAjEUBeD6l4jIC-imLzDY29tO2yWZ-JdgXCBrUqYXqMKUtKORt5dEVmdxcr7FYewOxBhAuIdJM5s1YylAjmtlHQp9xm5A1Qa1UE6ds4HUpq4kCrxgI2fsqdMCLtkAhLZVjQ6v2aiUTyHEEa2dUwM2f_zdb1PsY7fmZe9zif2Bx46XPvsuUOCbGAJ1_M3nr_TDdynQtvBVytx_92nn-9ged0Tthmdq07o7Uqm7ZVcrvy00OuWQzZ8eP5qXavr-_NpMplUEo_sKl4TaaiMlkHMr8hACqlZqUpKks2gsQk2O_BIkApLRUqHXBN5ZEzQO2f2_G4losc9x5_NhcXoI_wCKslY4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exploiting sparsity in stranded hidden Markov models for automatic speech recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yong Zhao ; Biing-Hwang Juang</creator><creatorcontrib>Yong Zhao ; Biing-Hwang Juang</creatorcontrib><description>We have recently proposed the stranded HMM to achieve a more accurate representation of heterogeneous data. As opposed to the regular Gaussian mixture HMM, the stranded HMM explicitly models the relationships among the mixture components. The transitions among mixture components encode possible trajectories of acoustic features for speech units. Accurately representing the underlying transition structure is crucial for the stranded HMM to produce an optimal recognition performance. In this paper, we propose to learn the stranded HMM structure by imposing sparsity constraints. In particular, entropic priors are incorporated in the maximum a posteriori (MAP) estimation of the mixture transition matrices. The experimental results showed that a significant improvement in model sparsity can be obtained with a slight sacrifice of the recognition accuracy.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781467350501</identifier><identifier>ISBN: 1467350508</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1467350494</identifier><identifier>EISBN: 9781467350495</identifier><identifier>EISBN: 1467350516</identifier><identifier>EISBN: 9781467350518</identifier><identifier>DOI: 10.1109/ACSSC.2012.6489305</identifier><language>eng</language><publisher>IEEE</publisher><subject>hidden Markov model ; Speech recognition</subject><ispartof>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, p.1623-1625</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6489305$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6489305$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yong Zhao</creatorcontrib><creatorcontrib>Biing-Hwang Juang</creatorcontrib><title>Exploiting sparsity in stranded hidden Markov models for automatic speech recognition</title><title>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</title><addtitle>ACSSC</addtitle><description>We have recently proposed the stranded HMM to achieve a more accurate representation of heterogeneous data. As opposed to the regular Gaussian mixture HMM, the stranded HMM explicitly models the relationships among the mixture components. The transitions among mixture components encode possible trajectories of acoustic features for speech units. Accurately representing the underlying transition structure is crucial for the stranded HMM to produce an optimal recognition performance. In this paper, we propose to learn the stranded HMM structure by imposing sparsity constraints. In particular, entropic priors are incorporated in the maximum a posteriori (MAP) estimation of the mixture transition matrices. The experimental results showed that a significant improvement in model sparsity can be obtained with a slight sacrifice of the recognition accuracy.</description><subject>hidden Markov model</subject><subject>Speech recognition</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781467350501</isbn><isbn>1467350508</isbn><isbn>1467350494</isbn><isbn>9781467350495</isbn><isbn>1467350516</isbn><isbn>9781467350518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNot0M1OAjEUBeD6l4jIC-imLzDY29tO2yWZ-JdgXCBrUqYXqMKUtKORt5dEVmdxcr7FYewOxBhAuIdJM5s1YylAjmtlHQp9xm5A1Qa1UE6ds4HUpq4kCrxgI2fsqdMCLtkAhLZVjQ6v2aiUTyHEEa2dUwM2f_zdb1PsY7fmZe9zif2Bx46XPvsuUOCbGAJ1_M3nr_TDdynQtvBVytx_92nn-9ged0Tthmdq07o7Uqm7ZVcrvy00OuWQzZ8eP5qXavr-_NpMplUEo_sKl4TaaiMlkHMr8hACqlZqUpKks2gsQk2O_BIkApLRUqHXBN5ZEzQO2f2_G4losc9x5_NhcXoI_wCKslY4</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Yong Zhao</creator><creator>Biing-Hwang Juang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201211</creationdate><title>Exploiting sparsity in stranded hidden Markov models for automatic speech recognition</title><author>Yong Zhao ; Biing-Hwang Juang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3be35857221e99fea1dd34c25e42e298378316e9eab12313e75243a5e1a987d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>hidden Markov model</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Yong Zhao</creatorcontrib><creatorcontrib>Biing-Hwang Juang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yong Zhao</au><au>Biing-Hwang Juang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploiting sparsity in stranded hidden Markov models for automatic speech recognition</atitle><btitle>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</btitle><stitle>ACSSC</stitle><date>2012-11</date><risdate>2012</risdate><spage>1623</spage><epage>1625</epage><pages>1623-1625</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781467350501</isbn><isbn>1467350508</isbn><eisbn>1467350494</eisbn><eisbn>9781467350495</eisbn><eisbn>1467350516</eisbn><eisbn>9781467350518</eisbn><abstract>We have recently proposed the stranded HMM to achieve a more accurate representation of heterogeneous data. As opposed to the regular Gaussian mixture HMM, the stranded HMM explicitly models the relationships among the mixture components. The transitions among mixture components encode possible trajectories of acoustic features for speech units. Accurately representing the underlying transition structure is crucial for the stranded HMM to produce an optimal recognition performance. In this paper, we propose to learn the stranded HMM structure by imposing sparsity constraints. In particular, entropic priors are incorporated in the maximum a posteriori (MAP) estimation of the mixture transition matrices. The experimental results showed that a significant improvement in model sparsity can be obtained with a slight sacrifice of the recognition accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2012.6489305</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, p.1623-1625
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_6489305
source IEEE Electronic Library (IEL) Conference Proceedings
subjects hidden Markov model
Speech recognition
title Exploiting sparsity in stranded hidden Markov models for automatic speech recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploiting%20sparsity%20in%20stranded%20hidden%20Markov%20models%20for%20automatic%20speech%20recognition&rft.btitle=2012%20Conference%20Record%20of%20the%20Forty%20Sixth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(ASILOMAR)&rft.au=Yong%20Zhao&rft.date=2012-11&rft.spage=1623&rft.epage=1625&rft.pages=1623-1625&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781467350501&rft.isbn_list=1467350508&rft_id=info:doi/10.1109/ACSSC.2012.6489305&rft_dat=%3Cieee_6IE%3E6489305%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467350494&rft.eisbn_list=9781467350495&rft.eisbn_list=1467350516&rft.eisbn_list=9781467350518&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6489305&rfr_iscdi=true