Cooperative adaptive estimation of distributed noncircular complex signals

The problem of distributed (cooperative) adaptive estimation of complex signals is addressed using augmented statistics and widely linear modelling, which enables optimal second order estimation of complex signals with both circular (rotation invariant) and noncircular (rotation dependent) distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dini, D. H., Mandic, D. P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1522
container_issue
container_start_page 1518
container_title
container_volume
creator Dini, D. H.
Mandic, D. P.
description The problem of distributed (cooperative) adaptive estimation of complex signals is addressed using augmented statistics and widely linear modelling, which enables optimal second order estimation of complex signals with both circular (rotation invariant) and noncircular (rotation dependent) distributions. The widely linear distributed augmented complex Kalman filter (D-ACKF) and recursive least squares (D-ACRLS) algorithms are introduced, and shown to allow for a unified treatment of the generality of complex valued signals. Further, the D-ACKF proposed here avoids the typical assumption that the observation noises at different nodes in the network are uncorrelated; thus providing enhanced performance in realworld scenarios.
doi_str_mv 10.1109/ACSSC.2012.6489281
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6489281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6489281</ieee_id><sourcerecordid>6489281</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8220335fed46279dbea05ebe4f644a52e7d08c160d06f5efa435a26360b3f1413</originalsourceid><addsrcrecordid>eNotkNtKxDAYhOMJrGtfQG_6Aq1_zs3lUjyy4MXq9ZI2fyTSbUraFX17i-7VDDPwMQwhNxQqSsHcrZvttqkYUFYpURtW0xNyRYXSXIIw4pRkTGpVMg78jORG18dOAj0nGQVZl4obfknyafoEgAWqjBEZeWliHDHZOXxhYZ0d_wxOc9gvWRyK6AsXpjmF9jCjK4Y4dCF1h96moov7scfvYgofg-2na3LhF8H8qCvy_nD_1jyVm9fH52a9KQPVci5rxoBz6dEJxbRxLVqQ2KLwSggrGWoHdUcVOFBeoreCS8sUV9ByTwXlK3L7zw2IuBvTsjT97I638F-1G1L9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cooperative adaptive estimation of distributed noncircular complex signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dini, D. H. ; Mandic, D. P.</creator><creatorcontrib>Dini, D. H. ; Mandic, D. P.</creatorcontrib><description>The problem of distributed (cooperative) adaptive estimation of complex signals is addressed using augmented statistics and widely linear modelling, which enables optimal second order estimation of complex signals with both circular (rotation invariant) and noncircular (rotation dependent) distributions. The widely linear distributed augmented complex Kalman filter (D-ACKF) and recursive least squares (D-ACRLS) algorithms are introduced, and shown to allow for a unified treatment of the generality of complex valued signals. Further, the D-ACKF proposed here avoids the typical assumption that the observation noises at different nodes in the network are uncorrelated; thus providing enhanced performance in realworld scenarios.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781467350501</identifier><identifier>ISBN: 1467350508</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1467350494</identifier><identifier>EISBN: 9781467350495</identifier><identifier>EISBN: 1467350516</identifier><identifier>EISBN: 9781467350518</identifier><identifier>DOI: 10.1109/ACSSC.2012.6489281</identifier><language>eng</language><publisher>IEEE</publisher><subject>complex circularity ; distributed diffusion estimation ; distributed recursive least squares (RLS) ; Kalman filter ; sensor networks ; Widely linear model</subject><ispartof>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, p.1518-1522</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6489281$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6489281$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dini, D. H.</creatorcontrib><creatorcontrib>Mandic, D. P.</creatorcontrib><title>Cooperative adaptive estimation of distributed noncircular complex signals</title><title>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</title><addtitle>ACSSC</addtitle><description>The problem of distributed (cooperative) adaptive estimation of complex signals is addressed using augmented statistics and widely linear modelling, which enables optimal second order estimation of complex signals with both circular (rotation invariant) and noncircular (rotation dependent) distributions. The widely linear distributed augmented complex Kalman filter (D-ACKF) and recursive least squares (D-ACRLS) algorithms are introduced, and shown to allow for a unified treatment of the generality of complex valued signals. Further, the D-ACKF proposed here avoids the typical assumption that the observation noises at different nodes in the network are uncorrelated; thus providing enhanced performance in realworld scenarios.</description><subject>complex circularity</subject><subject>distributed diffusion estimation</subject><subject>distributed recursive least squares (RLS)</subject><subject>Kalman filter</subject><subject>sensor networks</subject><subject>Widely linear model</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781467350501</isbn><isbn>1467350508</isbn><isbn>1467350494</isbn><isbn>9781467350495</isbn><isbn>1467350516</isbn><isbn>9781467350518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkNtKxDAYhOMJrGtfQG_6Aq1_zs3lUjyy4MXq9ZI2fyTSbUraFX17i-7VDDPwMQwhNxQqSsHcrZvttqkYUFYpURtW0xNyRYXSXIIw4pRkTGpVMg78jORG18dOAj0nGQVZl4obfknyafoEgAWqjBEZeWliHDHZOXxhYZ0d_wxOc9gvWRyK6AsXpjmF9jCjK4Y4dCF1h96moov7scfvYgofg-2na3LhF8H8qCvy_nD_1jyVm9fH52a9KQPVci5rxoBz6dEJxbRxLVqQ2KLwSggrGWoHdUcVOFBeoreCS8sUV9ByTwXlK3L7zw2IuBvTsjT97I638F-1G1L9</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Dini, D. H.</creator><creator>Mandic, D. P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201211</creationdate><title>Cooperative adaptive estimation of distributed noncircular complex signals</title><author>Dini, D. H. ; Mandic, D. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8220335fed46279dbea05ebe4f644a52e7d08c160d06f5efa435a26360b3f1413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>complex circularity</topic><topic>distributed diffusion estimation</topic><topic>distributed recursive least squares (RLS)</topic><topic>Kalman filter</topic><topic>sensor networks</topic><topic>Widely linear model</topic><toplevel>online_resources</toplevel><creatorcontrib>Dini, D. H.</creatorcontrib><creatorcontrib>Mandic, D. P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dini, D. H.</au><au>Mandic, D. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cooperative adaptive estimation of distributed noncircular complex signals</atitle><btitle>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</btitle><stitle>ACSSC</stitle><date>2012-11</date><risdate>2012</risdate><spage>1518</spage><epage>1522</epage><pages>1518-1522</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781467350501</isbn><isbn>1467350508</isbn><eisbn>1467350494</eisbn><eisbn>9781467350495</eisbn><eisbn>1467350516</eisbn><eisbn>9781467350518</eisbn><abstract>The problem of distributed (cooperative) adaptive estimation of complex signals is addressed using augmented statistics and widely linear modelling, which enables optimal second order estimation of complex signals with both circular (rotation invariant) and noncircular (rotation dependent) distributions. The widely linear distributed augmented complex Kalman filter (D-ACKF) and recursive least squares (D-ACRLS) algorithms are introduced, and shown to allow for a unified treatment of the generality of complex valued signals. Further, the D-ACKF proposed here avoids the typical assumption that the observation noises at different nodes in the network are uncorrelated; thus providing enhanced performance in realworld scenarios.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2012.6489281</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, p.1518-1522
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_6489281
source IEEE Electronic Library (IEL) Conference Proceedings
subjects complex circularity
distributed diffusion estimation
distributed recursive least squares (RLS)
Kalman filter
sensor networks
Widely linear model
title Cooperative adaptive estimation of distributed noncircular complex signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cooperative%20adaptive%20estimation%20of%20distributed%20noncircular%20complex%20signals&rft.btitle=2012%20Conference%20Record%20of%20the%20Forty%20Sixth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(ASILOMAR)&rft.au=Dini,%20D.%20H.&rft.date=2012-11&rft.spage=1518&rft.epage=1522&rft.pages=1518-1522&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781467350501&rft.isbn_list=1467350508&rft_id=info:doi/10.1109/ACSSC.2012.6489281&rft_dat=%3Cieee_6IE%3E6489281%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467350494&rft.eisbn_list=9781467350495&rft.eisbn_list=1467350516&rft.eisbn_list=9781467350518&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6489281&rfr_iscdi=true