Convergence analysis of clipped input adaptive filters applied to system identification
One of the efficient solutions for the identification of long finite-impulse response systems is the three-level clipped input LMS/RLS (CLMS/CRLS) adaptive filter. In this paper, we first derive the convergence behavior of the CLMS and CRLS algorithms for both time-invariant and time-varying system...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 805 |
---|---|
container_issue | |
container_start_page | 801 |
container_title | |
container_volume | |
creator | Bekrani, M. Khong, A. W. H. |
description | One of the efficient solutions for the identification of long finite-impulse response systems is the three-level clipped input LMS/RLS (CLMS/CRLS) adaptive filter. In this paper, we first derive the convergence behavior of the CLMS and CRLS algorithms for both time-invariant and time-varying system identification. In addition, we employ results arising from this analysis to derive the optimal step-size and forgetting factor for CLMS and CRLS. We show that these optimal step-size and forgetting factor allow the algorithms to achieve a low steady-state misalignment. |
doi_str_mv | 10.1109/ACSSC.2012.6489124 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6489124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6489124</ieee_id><sourcerecordid>6489124</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a388d267959f3351f8f6a6439f1c25ffa2cb47070c26b7a5c5405139f0f25103</originalsourceid><addsrcrecordid>eNot0M1KAzEYheH4B461N6Cb3MDUL_-TZRmsCgUXLbgsaSaRT6YzYRILvXsLdnUWD7yLQ8gTgwVjYF-W7WbTLjgwvtCysYzLK_LApDZCgbTymlRcGV1zAeKGzK1pLqaA3ZKKgWpqLay4J_OcfwDgHNXWyop8teNwDNN3GHygbnD9KWOmY6S-x5RCR3FIv4W6zqWCx0Aj9iVMmbqUejxzGWk-5RIOFLswFIzoXcFxeCR30fU5zC87I9vV67Z9r9efbx_tcl0jM6rUTjRNx7WxykYhFItN1E5LYSPzXMXouN9LAwY813vjlFcSFDszRK4YiBl5_s9iCGGXJjy46bS7XCT-AAFUVqg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convergence analysis of clipped input adaptive filters applied to system identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bekrani, M. ; Khong, A. W. H.</creator><creatorcontrib>Bekrani, M. ; Khong, A. W. H.</creatorcontrib><description>One of the efficient solutions for the identification of long finite-impulse response systems is the three-level clipped input LMS/RLS (CLMS/CRLS) adaptive filter. In this paper, we first derive the convergence behavior of the CLMS and CRLS algorithms for both time-invariant and time-varying system identification. In addition, we employ results arising from this analysis to derive the optimal step-size and forgetting factor for CLMS and CRLS. We show that these optimal step-size and forgetting factor allow the algorithms to achieve a low steady-state misalignment.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781467350501</identifier><identifier>ISBN: 1467350508</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1467350494</identifier><identifier>EISBN: 9781467350495</identifier><identifier>EISBN: 1467350516</identifier><identifier>EISBN: 9781467350518</identifier><identifier>DOI: 10.1109/ACSSC.2012.6489124</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filter ; Clipping ; Convergence rate ; Misalignment ; System identification</subject><ispartof>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, p.801-805</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6489124$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6489124$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bekrani, M.</creatorcontrib><creatorcontrib>Khong, A. W. H.</creatorcontrib><title>Convergence analysis of clipped input adaptive filters applied to system identification</title><title>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</title><addtitle>ACSSC</addtitle><description>One of the efficient solutions for the identification of long finite-impulse response systems is the three-level clipped input LMS/RLS (CLMS/CRLS) adaptive filter. In this paper, we first derive the convergence behavior of the CLMS and CRLS algorithms for both time-invariant and time-varying system identification. In addition, we employ results arising from this analysis to derive the optimal step-size and forgetting factor for CLMS and CRLS. We show that these optimal step-size and forgetting factor allow the algorithms to achieve a low steady-state misalignment.</description><subject>Adaptive filter</subject><subject>Clipping</subject><subject>Convergence rate</subject><subject>Misalignment</subject><subject>System identification</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781467350501</isbn><isbn>1467350508</isbn><isbn>1467350494</isbn><isbn>9781467350495</isbn><isbn>1467350516</isbn><isbn>9781467350518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNot0M1KAzEYheH4B461N6Cb3MDUL_-TZRmsCgUXLbgsaSaRT6YzYRILvXsLdnUWD7yLQ8gTgwVjYF-W7WbTLjgwvtCysYzLK_LApDZCgbTymlRcGV1zAeKGzK1pLqaA3ZKKgWpqLay4J_OcfwDgHNXWyop8teNwDNN3GHygbnD9KWOmY6S-x5RCR3FIv4W6zqWCx0Aj9iVMmbqUejxzGWk-5RIOFLswFIzoXcFxeCR30fU5zC87I9vV67Z9r9efbx_tcl0jM6rUTjRNx7WxykYhFItN1E5LYSPzXMXouN9LAwY813vjlFcSFDszRK4YiBl5_s9iCGGXJjy46bS7XCT-AAFUVqg</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Bekrani, M.</creator><creator>Khong, A. W. H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201211</creationdate><title>Convergence analysis of clipped input adaptive filters applied to system identification</title><author>Bekrani, M. ; Khong, A. W. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a388d267959f3351f8f6a6439f1c25ffa2cb47070c26b7a5c5405139f0f25103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive filter</topic><topic>Clipping</topic><topic>Convergence rate</topic><topic>Misalignment</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Bekrani, M.</creatorcontrib><creatorcontrib>Khong, A. W. H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bekrani, M.</au><au>Khong, A. W. H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convergence analysis of clipped input adaptive filters applied to system identification</atitle><btitle>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</btitle><stitle>ACSSC</stitle><date>2012-11</date><risdate>2012</risdate><spage>801</spage><epage>805</epage><pages>801-805</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781467350501</isbn><isbn>1467350508</isbn><eisbn>1467350494</eisbn><eisbn>9781467350495</eisbn><eisbn>1467350516</eisbn><eisbn>9781467350518</eisbn><abstract>One of the efficient solutions for the identification of long finite-impulse response systems is the three-level clipped input LMS/RLS (CLMS/CRLS) adaptive filter. In this paper, we first derive the convergence behavior of the CLMS and CRLS algorithms for both time-invariant and time-varying system identification. In addition, we employ results arising from this analysis to derive the optimal step-size and forgetting factor for CLMS and CRLS. We show that these optimal step-size and forgetting factor allow the algorithms to achieve a low steady-state misalignment.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2012.6489124</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1058-6393 |
ispartof | 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, p.801-805 |
issn | 1058-6393 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_6489124 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive filter Clipping Convergence rate Misalignment System identification |
title | Convergence analysis of clipped input adaptive filters applied to system identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convergence%20analysis%20of%20clipped%20input%20adaptive%20filters%20applied%20to%20system%20identification&rft.btitle=2012%20Conference%20Record%20of%20the%20Forty%20Sixth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(ASILOMAR)&rft.au=Bekrani,%20M.&rft.date=2012-11&rft.spage=801&rft.epage=805&rft.pages=801-805&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781467350501&rft.isbn_list=1467350508&rft_id=info:doi/10.1109/ACSSC.2012.6489124&rft_dat=%3Cieee_6IE%3E6489124%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467350494&rft.eisbn_list=9781467350495&rft.eisbn_list=1467350516&rft.eisbn_list=9781467350518&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6489124&rfr_iscdi=true |