Convergence analysis of clipped input adaptive filters applied to system identification

One of the efficient solutions for the identification of long finite-impulse response systems is the three-level clipped input LMS/RLS (CLMS/CRLS) adaptive filter. In this paper, we first derive the convergence behavior of the CLMS and CRLS algorithms for both time-invariant and time-varying system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bekrani, M., Khong, A. W. H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 805
container_issue
container_start_page 801
container_title
container_volume
creator Bekrani, M.
Khong, A. W. H.
description One of the efficient solutions for the identification of long finite-impulse response systems is the three-level clipped input LMS/RLS (CLMS/CRLS) adaptive filter. In this paper, we first derive the convergence behavior of the CLMS and CRLS algorithms for both time-invariant and time-varying system identification. In addition, we employ results arising from this analysis to derive the optimal step-size and forgetting factor for CLMS and CRLS. We show that these optimal step-size and forgetting factor allow the algorithms to achieve a low steady-state misalignment.
doi_str_mv 10.1109/ACSSC.2012.6489124
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6489124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6489124</ieee_id><sourcerecordid>6489124</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a388d267959f3351f8f6a6439f1c25ffa2cb47070c26b7a5c5405139f0f25103</originalsourceid><addsrcrecordid>eNot0M1KAzEYheH4B461N6Cb3MDUL_-TZRmsCgUXLbgsaSaRT6YzYRILvXsLdnUWD7yLQ8gTgwVjYF-W7WbTLjgwvtCysYzLK_LApDZCgbTymlRcGV1zAeKGzK1pLqaA3ZKKgWpqLay4J_OcfwDgHNXWyop8teNwDNN3GHygbnD9KWOmY6S-x5RCR3FIv4W6zqWCx0Aj9iVMmbqUejxzGWk-5RIOFLswFIzoXcFxeCR30fU5zC87I9vV67Z9r9efbx_tcl0jM6rUTjRNx7WxykYhFItN1E5LYSPzXMXouN9LAwY813vjlFcSFDszRK4YiBl5_s9iCGGXJjy46bS7XCT-AAFUVqg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Convergence analysis of clipped input adaptive filters applied to system identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bekrani, M. ; Khong, A. W. H.</creator><creatorcontrib>Bekrani, M. ; Khong, A. W. H.</creatorcontrib><description>One of the efficient solutions for the identification of long finite-impulse response systems is the three-level clipped input LMS/RLS (CLMS/CRLS) adaptive filter. In this paper, we first derive the convergence behavior of the CLMS and CRLS algorithms for both time-invariant and time-varying system identification. In addition, we employ results arising from this analysis to derive the optimal step-size and forgetting factor for CLMS and CRLS. We show that these optimal step-size and forgetting factor allow the algorithms to achieve a low steady-state misalignment.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781467350501</identifier><identifier>ISBN: 1467350508</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1467350494</identifier><identifier>EISBN: 9781467350495</identifier><identifier>EISBN: 1467350516</identifier><identifier>EISBN: 9781467350518</identifier><identifier>DOI: 10.1109/ACSSC.2012.6489124</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filter ; Clipping ; Convergence rate ; Misalignment ; System identification</subject><ispartof>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, p.801-805</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6489124$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6489124$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bekrani, M.</creatorcontrib><creatorcontrib>Khong, A. W. H.</creatorcontrib><title>Convergence analysis of clipped input adaptive filters applied to system identification</title><title>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</title><addtitle>ACSSC</addtitle><description>One of the efficient solutions for the identification of long finite-impulse response systems is the three-level clipped input LMS/RLS (CLMS/CRLS) adaptive filter. In this paper, we first derive the convergence behavior of the CLMS and CRLS algorithms for both time-invariant and time-varying system identification. In addition, we employ results arising from this analysis to derive the optimal step-size and forgetting factor for CLMS and CRLS. We show that these optimal step-size and forgetting factor allow the algorithms to achieve a low steady-state misalignment.</description><subject>Adaptive filter</subject><subject>Clipping</subject><subject>Convergence rate</subject><subject>Misalignment</subject><subject>System identification</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781467350501</isbn><isbn>1467350508</isbn><isbn>1467350494</isbn><isbn>9781467350495</isbn><isbn>1467350516</isbn><isbn>9781467350518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNot0M1KAzEYheH4B461N6Cb3MDUL_-TZRmsCgUXLbgsaSaRT6YzYRILvXsLdnUWD7yLQ8gTgwVjYF-W7WbTLjgwvtCysYzLK_LApDZCgbTymlRcGV1zAeKGzK1pLqaA3ZKKgWpqLay4J_OcfwDgHNXWyop8teNwDNN3GHygbnD9KWOmY6S-x5RCR3FIv4W6zqWCx0Aj9iVMmbqUejxzGWk-5RIOFLswFIzoXcFxeCR30fU5zC87I9vV67Z9r9efbx_tcl0jM6rUTjRNx7WxykYhFItN1E5LYSPzXMXouN9LAwY813vjlFcSFDszRK4YiBl5_s9iCGGXJjy46bS7XCT-AAFUVqg</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Bekrani, M.</creator><creator>Khong, A. W. H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201211</creationdate><title>Convergence analysis of clipped input adaptive filters applied to system identification</title><author>Bekrani, M. ; Khong, A. W. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a388d267959f3351f8f6a6439f1c25ffa2cb47070c26b7a5c5405139f0f25103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive filter</topic><topic>Clipping</topic><topic>Convergence rate</topic><topic>Misalignment</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Bekrani, M.</creatorcontrib><creatorcontrib>Khong, A. W. H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bekrani, M.</au><au>Khong, A. W. H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Convergence analysis of clipped input adaptive filters applied to system identification</atitle><btitle>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</btitle><stitle>ACSSC</stitle><date>2012-11</date><risdate>2012</risdate><spage>801</spage><epage>805</epage><pages>801-805</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781467350501</isbn><isbn>1467350508</isbn><eisbn>1467350494</eisbn><eisbn>9781467350495</eisbn><eisbn>1467350516</eisbn><eisbn>9781467350518</eisbn><abstract>One of the efficient solutions for the identification of long finite-impulse response systems is the three-level clipped input LMS/RLS (CLMS/CRLS) adaptive filter. In this paper, we first derive the convergence behavior of the CLMS and CRLS algorithms for both time-invariant and time-varying system identification. In addition, we employ results arising from this analysis to derive the optimal step-size and forgetting factor for CLMS and CRLS. We show that these optimal step-size and forgetting factor allow the algorithms to achieve a low steady-state misalignment.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2012.6489124</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, p.801-805
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_6489124
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive filter
Clipping
Convergence rate
Misalignment
System identification
title Convergence analysis of clipped input adaptive filters applied to system identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Convergence%20analysis%20of%20clipped%20input%20adaptive%20filters%20applied%20to%20system%20identification&rft.btitle=2012%20Conference%20Record%20of%20the%20Forty%20Sixth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(ASILOMAR)&rft.au=Bekrani,%20M.&rft.date=2012-11&rft.spage=801&rft.epage=805&rft.pages=801-805&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781467350501&rft.isbn_list=1467350508&rft_id=info:doi/10.1109/ACSSC.2012.6489124&rft_dat=%3Cieee_6IE%3E6489124%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467350494&rft.eisbn_list=9781467350495&rft.eisbn_list=1467350516&rft.eisbn_list=9781467350518&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6489124&rfr_iscdi=true