3D volumetric ultrasound imaging with a 32×32 CMUT array integrated with front-end ICs using flip-chip bonding technology

3D ultrasound imaging is becoming increasingly prevalent in the medical field. Compared to conventional 2D imaging systems, 3D imaging can provide a detailed view of tissue structures that makes diagnosis easier for the physicians. In addition, 2D image slices can be formed at various orientations t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bhuyan, A., Choe, J. W., Byung Chul Lee, Wygant, I., Nikoozadeh, A., Oralkan, O., Khuri-Yakub, B. T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue
container_start_page 396
container_title
container_volume
creator Bhuyan, A.
Choe, J. W.
Byung Chul Lee
Wygant, I.
Nikoozadeh, A.
Oralkan, O.
Khuri-Yakub, B. T.
description 3D ultrasound imaging is becoming increasingly prevalent in the medical field. Compared to conventional 2D imaging systems, 3D imaging can provide a detailed view of tissue structures that makes diagnosis easier for the physicians. In addition, 2D image slices can be formed at various orientations to the transducer, making the examination less dependent on the skill of the sonographer. However, various challenges exist in developing a 3D imaging system, such as integration of a large number of elements, as well as post-processing of datasets received from a large number of channels. 2D transducer arrays are typically integrated with custom ICs in the probe handle to perform some intermediate beamforming and to reduce the number of cable connections to the imaging system. Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as an alternative to piezoelectric transducers. Being a MEMS device, they greatly benefit from flexibility and ease of fabrication, and can be seamlessly integrated with electronics. Previous work demonstrates 3D stacking of CMUTs and dummy ICs with an intermediate interposer layer. However, that represents more of a mechanical demonstration of 3D integration. In this paper, we present a fully functional 3D ultrasound imaging system comprising a 32×32 2D CMUT array, 3D-stacked with front-end ICs using flip-chip bonding technology. The imaging system is capable of capturing real-time volumetric ultrasound data, and displaying 2D and 3D ultrasound images.
doi_str_mv 10.1109/ISSCC.2013.6487786
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6487786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6487786</ieee_id><sourcerecordid>6487786</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-800f1af8f96b273eacf560222938d48826f2614693f14be8b459f0671f2a8f6b3</originalsourceid><addsrcrecordid>eNo1UN1OwjAYrX-JgLyA3vQFiv3bt_bSTFQSjBfgNem2dtSMjXSdBl_EB_LFhIBXJzl_yTkI3TI6YYzq-9likWUTTpmYgFRpquAMDZmEVMiESXWOBlykQBRQuEBjnap_LYFLNKBMCwKJoNdo2HUflNJEgxqgb_GIP9u639gYfIH7OgbTtX1TYr8xlW8q_OXjGhss-O-P4Dh7fV9iE4LZYd9EWwUTbXn0uNA2kdh9dJZ1uO8OYVf7LSnWfovztikPTLTFumnrttrdoCtn6s6OTzhCy6fpMnsh87fnWfYwJ17TSBSljhmnnIacp8KawiVAOedaqFIqxcFx2E_VwjGZW5XLRDsKKXPcKAe5GKG7Y6231q62Yb8r7FanC8Uf0Y5h6g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>3D volumetric ultrasound imaging with a 32×32 CMUT array integrated with front-end ICs using flip-chip bonding technology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhuyan, A. ; Choe, J. W. ; Byung Chul Lee ; Wygant, I. ; Nikoozadeh, A. ; Oralkan, O. ; Khuri-Yakub, B. T.</creator><creatorcontrib>Bhuyan, A. ; Choe, J. W. ; Byung Chul Lee ; Wygant, I. ; Nikoozadeh, A. ; Oralkan, O. ; Khuri-Yakub, B. T.</creatorcontrib><description>3D ultrasound imaging is becoming increasingly prevalent in the medical field. Compared to conventional 2D imaging systems, 3D imaging can provide a detailed view of tissue structures that makes diagnosis easier for the physicians. In addition, 2D image slices can be formed at various orientations to the transducer, making the examination less dependent on the skill of the sonographer. However, various challenges exist in developing a 3D imaging system, such as integration of a large number of elements, as well as post-processing of datasets received from a large number of channels. 2D transducer arrays are typically integrated with custom ICs in the probe handle to perform some intermediate beamforming and to reduce the number of cable connections to the imaging system. Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as an alternative to piezoelectric transducers. Being a MEMS device, they greatly benefit from flexibility and ease of fabrication, and can be seamlessly integrated with electronics. Previous work demonstrates 3D stacking of CMUTs and dummy ICs with an intermediate interposer layer. However, that represents more of a mechanical demonstration of 3D integration. In this paper, we present a fully functional 3D ultrasound imaging system comprising a 32×32 2D CMUT array, 3D-stacked with front-end ICs using flip-chip bonding technology. The imaging system is capable of capturing real-time volumetric ultrasound data, and displaying 2D and 3D ultrasound images.</description><identifier>ISSN: 0193-6530</identifier><identifier>ISBN: 9781467345156</identifier><identifier>ISBN: 1467345156</identifier><identifier>EISSN: 2376-8606</identifier><identifier>EISBN: 1467345148</identifier><identifier>EISBN: 9781467345149</identifier><identifier>EISBN: 9781467345163</identifier><identifier>EISBN: 1467345164</identifier><identifier>DOI: 10.1109/ISSCC.2013.6487786</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Bonding ; Flip-chip devices ; Imaging ; Integrated circuits ; Three-dimensional displays ; Ultrasonic imaging</subject><ispartof>2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2013, p.396-397</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6487786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6487786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhuyan, A.</creatorcontrib><creatorcontrib>Choe, J. W.</creatorcontrib><creatorcontrib>Byung Chul Lee</creatorcontrib><creatorcontrib>Wygant, I.</creatorcontrib><creatorcontrib>Nikoozadeh, A.</creatorcontrib><creatorcontrib>Oralkan, O.</creatorcontrib><creatorcontrib>Khuri-Yakub, B. T.</creatorcontrib><title>3D volumetric ultrasound imaging with a 32×32 CMUT array integrated with front-end ICs using flip-chip bonding technology</title><title>2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers</title><addtitle>ISSCC</addtitle><description>3D ultrasound imaging is becoming increasingly prevalent in the medical field. Compared to conventional 2D imaging systems, 3D imaging can provide a detailed view of tissue structures that makes diagnosis easier for the physicians. In addition, 2D image slices can be formed at various orientations to the transducer, making the examination less dependent on the skill of the sonographer. However, various challenges exist in developing a 3D imaging system, such as integration of a large number of elements, as well as post-processing of datasets received from a large number of channels. 2D transducer arrays are typically integrated with custom ICs in the probe handle to perform some intermediate beamforming and to reduce the number of cable connections to the imaging system. Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as an alternative to piezoelectric transducers. Being a MEMS device, they greatly benefit from flexibility and ease of fabrication, and can be seamlessly integrated with electronics. Previous work demonstrates 3D stacking of CMUTs and dummy ICs with an intermediate interposer layer. However, that represents more of a mechanical demonstration of 3D integration. In this paper, we present a fully functional 3D ultrasound imaging system comprising a 32×32 2D CMUT array, 3D-stacked with front-end ICs using flip-chip bonding technology. The imaging system is capable of capturing real-time volumetric ultrasound data, and displaying 2D and 3D ultrasound images.</description><subject>Arrays</subject><subject>Bonding</subject><subject>Flip-chip devices</subject><subject>Imaging</subject><subject>Integrated circuits</subject><subject>Three-dimensional displays</subject><subject>Ultrasonic imaging</subject><issn>0193-6530</issn><issn>2376-8606</issn><isbn>9781467345156</isbn><isbn>1467345156</isbn><isbn>1467345148</isbn><isbn>9781467345149</isbn><isbn>9781467345163</isbn><isbn>1467345164</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UN1OwjAYrX-JgLyA3vQFiv3bt_bSTFQSjBfgNem2dtSMjXSdBl_EB_LFhIBXJzl_yTkI3TI6YYzq-9likWUTTpmYgFRpquAMDZmEVMiESXWOBlykQBRQuEBjnap_LYFLNKBMCwKJoNdo2HUflNJEgxqgb_GIP9u639gYfIH7OgbTtX1TYr8xlW8q_OXjGhss-O-P4Dh7fV9iE4LZYd9EWwUTbXn0uNA2kdh9dJZ1uO8OYVf7LSnWfovztikPTLTFumnrttrdoCtn6s6OTzhCy6fpMnsh87fnWfYwJ17TSBSljhmnnIacp8KawiVAOedaqFIqxcFx2E_VwjGZW5XLRDsKKXPcKAe5GKG7Y6231q62Yb8r7FanC8Uf0Y5h6g</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Bhuyan, A.</creator><creator>Choe, J. W.</creator><creator>Byung Chul Lee</creator><creator>Wygant, I.</creator><creator>Nikoozadeh, A.</creator><creator>Oralkan, O.</creator><creator>Khuri-Yakub, B. T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201302</creationdate><title>3D volumetric ultrasound imaging with a 32×32 CMUT array integrated with front-end ICs using flip-chip bonding technology</title><author>Bhuyan, A. ; Choe, J. W. ; Byung Chul Lee ; Wygant, I. ; Nikoozadeh, A. ; Oralkan, O. ; Khuri-Yakub, B. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-800f1af8f96b273eacf560222938d48826f2614693f14be8b459f0671f2a8f6b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arrays</topic><topic>Bonding</topic><topic>Flip-chip devices</topic><topic>Imaging</topic><topic>Integrated circuits</topic><topic>Three-dimensional displays</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhuyan, A.</creatorcontrib><creatorcontrib>Choe, J. W.</creatorcontrib><creatorcontrib>Byung Chul Lee</creatorcontrib><creatorcontrib>Wygant, I.</creatorcontrib><creatorcontrib>Nikoozadeh, A.</creatorcontrib><creatorcontrib>Oralkan, O.</creatorcontrib><creatorcontrib>Khuri-Yakub, B. T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhuyan, A.</au><au>Choe, J. W.</au><au>Byung Chul Lee</au><au>Wygant, I.</au><au>Nikoozadeh, A.</au><au>Oralkan, O.</au><au>Khuri-Yakub, B. T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>3D volumetric ultrasound imaging with a 32×32 CMUT array integrated with front-end ICs using flip-chip bonding technology</atitle><btitle>2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers</btitle><stitle>ISSCC</stitle><date>2013-02</date><risdate>2013</risdate><spage>396</spage><epage>397</epage><pages>396-397</pages><issn>0193-6530</issn><eissn>2376-8606</eissn><isbn>9781467345156</isbn><isbn>1467345156</isbn><eisbn>1467345148</eisbn><eisbn>9781467345149</eisbn><eisbn>9781467345163</eisbn><eisbn>1467345164</eisbn><abstract>3D ultrasound imaging is becoming increasingly prevalent in the medical field. Compared to conventional 2D imaging systems, 3D imaging can provide a detailed view of tissue structures that makes diagnosis easier for the physicians. In addition, 2D image slices can be formed at various orientations to the transducer, making the examination less dependent on the skill of the sonographer. However, various challenges exist in developing a 3D imaging system, such as integration of a large number of elements, as well as post-processing of datasets received from a large number of channels. 2D transducer arrays are typically integrated with custom ICs in the probe handle to perform some intermediate beamforming and to reduce the number of cable connections to the imaging system. Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as an alternative to piezoelectric transducers. Being a MEMS device, they greatly benefit from flexibility and ease of fabrication, and can be seamlessly integrated with electronics. Previous work demonstrates 3D stacking of CMUTs and dummy ICs with an intermediate interposer layer. However, that represents more of a mechanical demonstration of 3D integration. In this paper, we present a fully functional 3D ultrasound imaging system comprising a 32×32 2D CMUT array, 3D-stacked with front-end ICs using flip-chip bonding technology. The imaging system is capable of capturing real-time volumetric ultrasound data, and displaying 2D and 3D ultrasound images.</abstract><pub>IEEE</pub><doi>10.1109/ISSCC.2013.6487786</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0193-6530
ispartof 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2013, p.396-397
issn 0193-6530
2376-8606
language eng
recordid cdi_ieee_primary_6487786
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arrays
Bonding
Flip-chip devices
Imaging
Integrated circuits
Three-dimensional displays
Ultrasonic imaging
title 3D volumetric ultrasound imaging with a 32×32 CMUT array integrated with front-end ICs using flip-chip bonding technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=3D%20volumetric%20ultrasound%20imaging%20with%20a%2032%C3%9732%20CMUT%20array%20integrated%20with%20front-end%20ICs%20using%20flip-chip%20bonding%20technology&rft.btitle=2013%20IEEE%20International%20Solid-State%20Circuits%20Conference%20Digest%20of%20Technical%20Papers&rft.au=Bhuyan,%20A.&rft.date=2013-02&rft.spage=396&rft.epage=397&rft.pages=396-397&rft.issn=0193-6530&rft.eissn=2376-8606&rft.isbn=9781467345156&rft.isbn_list=1467345156&rft_id=info:doi/10.1109/ISSCC.2013.6487786&rft_dat=%3Cieee_6IE%3E6487786%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467345148&rft.eisbn_list=9781467345149&rft.eisbn_list=9781467345163&rft.eisbn_list=1467345164&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6487786&rfr_iscdi=true