32Gb/s data-interpolator receiver with 2-tap DFE in 28nm CMOS
In next-generation communication standards, such as OIF CEI-28G-SR and CEI-56G-VSR, the data rate has to be doubled or quadrupled compared to the current standards. Though transceivers for a data rate over 25Gb/s have been reported [1-3], designing clock-generating circuits for the receiver front-en...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | |
container_start_page | 36 |
container_title | |
container_volume | |
creator | Doi, Y. Shibasaki, T. Danjo, T. Chaivipas, W. Hashida, T. Miyaoka, H. Hoshino, M. Koyanagi, Y. Yamamoto, T. Tsukamoto, S. Tamura, H. |
description | In next-generation communication standards, such as OIF CEI-28G-SR and CEI-56G-VSR, the data rate has to be doubled or quadrupled compared to the current standards. Though transceivers for a data rate over 25Gb/s have been reported [1-3], designing clock-generating circuits for the receiver front-end is a significant challenge. In a phase interpolator (PI) commonly used in conventional receivers for a multi-channel configuration, both the linearity and frequency characteristics of the circuit affect the interpolation accuracy since it dynamically interpolates between reference clock signals supplied from a PLL, making the design more difficult. Blind-clock ADC-based receivers [4] eliminate the need for a clock-phase-adjusting circuit, but the area and power overheads are large due to high-sampling-rate ADCs. To address these issues, we fabricate and test a 28nm CMOS blind-clock receiver that performs phase tracking by using a data interpolator (DI). We confirm error-free operation of the receiver up to 32Gb/s with power consumption of 308.4mW from a 0.9V power supply. |
doi_str_mv | 10.1109/ISSCC.2013.6487626 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6487626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6487626</ieee_id><sourcerecordid>6487626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-195c32100c2f923c2117379df23c39db6a374475b8cd202c2a9f47dd4f2bf0f73</originalsourceid><addsrcrecordid>eNo1kMlKA0EURcsJ7MT8gG7qByp59V6NCxfSGQxEsoiuQ3V3FZZkortR_HsF4-oeOHAWl7F7CWMpwU-Wm01ZjhEkjY1y1qC5YAOpjCWlpXKXrECyRjgD5oqNvHX_TptrVoD0JIwmuGWDrvsAAO2NK9gj4aKadLwJfRD50Mf2dNyF_tjyNtYxf8aWf-X-naPow4lP5zOeDxzdYc_Ll_Xmjt2ksOvi6LxD9jafvZbPYrVeLMunlcjS6l5Ir2tCCVBj8kg1SmnJ-ib9MvmmMoGsUlZXrm4QsMbgk7JNoxJWCZKlIXv46-YY4_bU5n1ov7fnG-gH7I1JyQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>32Gb/s data-interpolator receiver with 2-tap DFE in 28nm CMOS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Doi, Y. ; Shibasaki, T. ; Danjo, T. ; Chaivipas, W. ; Hashida, T. ; Miyaoka, H. ; Hoshino, M. ; Koyanagi, Y. ; Yamamoto, T. ; Tsukamoto, S. ; Tamura, H.</creator><creatorcontrib>Doi, Y. ; Shibasaki, T. ; Danjo, T. ; Chaivipas, W. ; Hashida, T. ; Miyaoka, H. ; Hoshino, M. ; Koyanagi, Y. ; Yamamoto, T. ; Tsukamoto, S. ; Tamura, H.</creatorcontrib><description>In next-generation communication standards, such as OIF CEI-28G-SR and CEI-56G-VSR, the data rate has to be doubled or quadrupled compared to the current standards. Though transceivers for a data rate over 25Gb/s have been reported [1-3], designing clock-generating circuits for the receiver front-end is a significant challenge. In a phase interpolator (PI) commonly used in conventional receivers for a multi-channel configuration, both the linearity and frequency characteristics of the circuit affect the interpolation accuracy since it dynamically interpolates between reference clock signals supplied from a PLL, making the design more difficult. Blind-clock ADC-based receivers [4] eliminate the need for a clock-phase-adjusting circuit, but the area and power overheads are large due to high-sampling-rate ADCs. To address these issues, we fabricate and test a 28nm CMOS blind-clock receiver that performs phase tracking by using a data interpolator (DI). We confirm error-free operation of the receiver up to 32Gb/s with power consumption of 308.4mW from a 0.9V power supply.</description><identifier>ISSN: 0193-6530</identifier><identifier>ISBN: 9781467345156</identifier><identifier>ISBN: 1467345156</identifier><identifier>EISSN: 2376-8606</identifier><identifier>EISBN: 1467345148</identifier><identifier>EISBN: 9781467345149</identifier><identifier>EISBN: 9781467345163</identifier><identifier>EISBN: 1467345164</identifier><identifier>DOI: 10.1109/ISSCC.2013.6487626</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitors ; Clocks ; CMOS integrated circuits ; Decision feedback equalizers ; Interpolation ; Receivers ; Transceivers</subject><ispartof>2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2013, p.36-37</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6487626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6487626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Doi, Y.</creatorcontrib><creatorcontrib>Shibasaki, T.</creatorcontrib><creatorcontrib>Danjo, T.</creatorcontrib><creatorcontrib>Chaivipas, W.</creatorcontrib><creatorcontrib>Hashida, T.</creatorcontrib><creatorcontrib>Miyaoka, H.</creatorcontrib><creatorcontrib>Hoshino, M.</creatorcontrib><creatorcontrib>Koyanagi, Y.</creatorcontrib><creatorcontrib>Yamamoto, T.</creatorcontrib><creatorcontrib>Tsukamoto, S.</creatorcontrib><creatorcontrib>Tamura, H.</creatorcontrib><title>32Gb/s data-interpolator receiver with 2-tap DFE in 28nm CMOS</title><title>2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers</title><addtitle>ISSCC</addtitle><description>In next-generation communication standards, such as OIF CEI-28G-SR and CEI-56G-VSR, the data rate has to be doubled or quadrupled compared to the current standards. Though transceivers for a data rate over 25Gb/s have been reported [1-3], designing clock-generating circuits for the receiver front-end is a significant challenge. In a phase interpolator (PI) commonly used in conventional receivers for a multi-channel configuration, both the linearity and frequency characteristics of the circuit affect the interpolation accuracy since it dynamically interpolates between reference clock signals supplied from a PLL, making the design more difficult. Blind-clock ADC-based receivers [4] eliminate the need for a clock-phase-adjusting circuit, but the area and power overheads are large due to high-sampling-rate ADCs. To address these issues, we fabricate and test a 28nm CMOS blind-clock receiver that performs phase tracking by using a data interpolator (DI). We confirm error-free operation of the receiver up to 32Gb/s with power consumption of 308.4mW from a 0.9V power supply.</description><subject>Capacitors</subject><subject>Clocks</subject><subject>CMOS integrated circuits</subject><subject>Decision feedback equalizers</subject><subject>Interpolation</subject><subject>Receivers</subject><subject>Transceivers</subject><issn>0193-6530</issn><issn>2376-8606</issn><isbn>9781467345156</isbn><isbn>1467345156</isbn><isbn>1467345148</isbn><isbn>9781467345149</isbn><isbn>9781467345163</isbn><isbn>1467345164</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMlKA0EURcsJ7MT8gG7qByp59V6NCxfSGQxEsoiuQ3V3FZZkortR_HsF4-oeOHAWl7F7CWMpwU-Wm01ZjhEkjY1y1qC5YAOpjCWlpXKXrECyRjgD5oqNvHX_TptrVoD0JIwmuGWDrvsAAO2NK9gj4aKadLwJfRD50Mf2dNyF_tjyNtYxf8aWf-X-naPow4lP5zOeDxzdYc_Ll_Xmjt2ksOvi6LxD9jafvZbPYrVeLMunlcjS6l5Ir2tCCVBj8kg1SmnJ-ib9MvmmMoGsUlZXrm4QsMbgk7JNoxJWCZKlIXv46-YY4_bU5n1ov7fnG-gH7I1JyQ</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Doi, Y.</creator><creator>Shibasaki, T.</creator><creator>Danjo, T.</creator><creator>Chaivipas, W.</creator><creator>Hashida, T.</creator><creator>Miyaoka, H.</creator><creator>Hoshino, M.</creator><creator>Koyanagi, Y.</creator><creator>Yamamoto, T.</creator><creator>Tsukamoto, S.</creator><creator>Tamura, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201302</creationdate><title>32Gb/s data-interpolator receiver with 2-tap DFE in 28nm CMOS</title><author>Doi, Y. ; Shibasaki, T. ; Danjo, T. ; Chaivipas, W. ; Hashida, T. ; Miyaoka, H. ; Hoshino, M. ; Koyanagi, Y. ; Yamamoto, T. ; Tsukamoto, S. ; Tamura, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-195c32100c2f923c2117379df23c39db6a374475b8cd202c2a9f47dd4f2bf0f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Capacitors</topic><topic>Clocks</topic><topic>CMOS integrated circuits</topic><topic>Decision feedback equalizers</topic><topic>Interpolation</topic><topic>Receivers</topic><topic>Transceivers</topic><toplevel>online_resources</toplevel><creatorcontrib>Doi, Y.</creatorcontrib><creatorcontrib>Shibasaki, T.</creatorcontrib><creatorcontrib>Danjo, T.</creatorcontrib><creatorcontrib>Chaivipas, W.</creatorcontrib><creatorcontrib>Hashida, T.</creatorcontrib><creatorcontrib>Miyaoka, H.</creatorcontrib><creatorcontrib>Hoshino, M.</creatorcontrib><creatorcontrib>Koyanagi, Y.</creatorcontrib><creatorcontrib>Yamamoto, T.</creatorcontrib><creatorcontrib>Tsukamoto, S.</creatorcontrib><creatorcontrib>Tamura, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doi, Y.</au><au>Shibasaki, T.</au><au>Danjo, T.</au><au>Chaivipas, W.</au><au>Hashida, T.</au><au>Miyaoka, H.</au><au>Hoshino, M.</au><au>Koyanagi, Y.</au><au>Yamamoto, T.</au><au>Tsukamoto, S.</au><au>Tamura, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>32Gb/s data-interpolator receiver with 2-tap DFE in 28nm CMOS</atitle><btitle>2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers</btitle><stitle>ISSCC</stitle><date>2013-02</date><risdate>2013</risdate><spage>36</spage><epage>37</epage><pages>36-37</pages><issn>0193-6530</issn><eissn>2376-8606</eissn><isbn>9781467345156</isbn><isbn>1467345156</isbn><eisbn>1467345148</eisbn><eisbn>9781467345149</eisbn><eisbn>9781467345163</eisbn><eisbn>1467345164</eisbn><abstract>In next-generation communication standards, such as OIF CEI-28G-SR and CEI-56G-VSR, the data rate has to be doubled or quadrupled compared to the current standards. Though transceivers for a data rate over 25Gb/s have been reported [1-3], designing clock-generating circuits for the receiver front-end is a significant challenge. In a phase interpolator (PI) commonly used in conventional receivers for a multi-channel configuration, both the linearity and frequency characteristics of the circuit affect the interpolation accuracy since it dynamically interpolates between reference clock signals supplied from a PLL, making the design more difficult. Blind-clock ADC-based receivers [4] eliminate the need for a clock-phase-adjusting circuit, but the area and power overheads are large due to high-sampling-rate ADCs. To address these issues, we fabricate and test a 28nm CMOS blind-clock receiver that performs phase tracking by using a data interpolator (DI). We confirm error-free operation of the receiver up to 32Gb/s with power consumption of 308.4mW from a 0.9V power supply.</abstract><pub>IEEE</pub><doi>10.1109/ISSCC.2013.6487626</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0193-6530 |
ispartof | 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2013, p.36-37 |
issn | 0193-6530 2376-8606 |
language | eng |
recordid | cdi_ieee_primary_6487626 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Capacitors Clocks CMOS integrated circuits Decision feedback equalizers Interpolation Receivers Transceivers |
title | 32Gb/s data-interpolator receiver with 2-tap DFE in 28nm CMOS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=32Gb/s%20data-interpolator%20receiver%20with%202-tap%20DFE%20in%2028nm%20CMOS&rft.btitle=2013%20IEEE%20International%20Solid-State%20Circuits%20Conference%20Digest%20of%20Technical%20Papers&rft.au=Doi,%20Y.&rft.date=2013-02&rft.spage=36&rft.epage=37&rft.pages=36-37&rft.issn=0193-6530&rft.eissn=2376-8606&rft.isbn=9781467345156&rft.isbn_list=1467345156&rft_id=info:doi/10.1109/ISSCC.2013.6487626&rft_dat=%3Cieee_6IE%3E6487626%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467345148&rft.eisbn_list=9781467345149&rft.eisbn_list=9781467345163&rft.eisbn_list=1467345164&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6487626&rfr_iscdi=true |