Design of an adaptive neural kinematic controller for a National Instrument mobile robot system

The paper proposes an adaptive neural kinematic controller to guide a National Instrument starter kit robot, which is a nonholonomic differential drive mobile robot, to follow a predefined trajectory. The structure of the controller is based on a neural network topology. The Multi-Layer Perceptron M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Al-Shibaany, Z. Y., Hedley, J., Bicker, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue
container_start_page 623
container_title
container_volume
creator Al-Shibaany, Z. Y.
Hedley, J.
Bicker, R.
description The paper proposes an adaptive neural kinematic controller to guide a National Instrument starter kit robot, which is a nonholonomic differential drive mobile robot, to follow a predefined trajectory. The structure of the controller is based on a neural network topology. The Multi-Layer Perceptron MLP neural network was used to design and implement the controller. The error back propagation algorithm was used to train the neural network to learn the behavior of the mobile robot kinematic model. The neural kinematic controller is trained offline and then the weights of the neural network are adjusted online in order to find the required linear and angular velocities to guide the robot throughout the reference trajectory. The controller is implemented in LabView2011 software and then deployed to the mobile robot platform to allow for autonomous navigation. The simulation results and experimental results show that the proposed controller can successfully navigate the robot along the required path.
doi_str_mv 10.1109/ICCSCE.2012.6487220
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6487220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6487220</ieee_id><sourcerecordid>6487220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-8e0954149d6c6cc978451083a595ac4ead166b14efc5b7b0ee6d31d84a9abe973</originalsourceid><addsrcrecordid>eNo1UFFLwzAYjIigzv6CveQPdCZpkjaPUqcbDH1Qn8fX9KtE22QkmbB_b8H5dNxxdxxHyJKzFefM3G_b9q1drwTjYqVlUwvBLsgtl7quKi65vCSFqZt_LtQ1KVL6YozNad0wdUP2j5jcp6dhoOAp9HDI7gepx2OEkX47jxNkZ6kNPscwjhjpECIF-jLLwc-erU85Hif0mU6hcyPSGLqQaTqljNMduRpgTFiccUE-ntbv7abcvT5v24ddaYVQuWyQGTUPNr222tp5tFScNRUoo8BKhJ5r3XGJg1Vd3TFE3Ve8byQY6NDU1YIs_3odIu4P0U0QT_vzJ9UvthhW0g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of an adaptive neural kinematic controller for a National Instrument mobile robot system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Al-Shibaany, Z. Y. ; Hedley, J. ; Bicker, R.</creator><creatorcontrib>Al-Shibaany, Z. Y. ; Hedley, J. ; Bicker, R.</creatorcontrib><description>The paper proposes an adaptive neural kinematic controller to guide a National Instrument starter kit robot, which is a nonholonomic differential drive mobile robot, to follow a predefined trajectory. The structure of the controller is based on a neural network topology. The Multi-Layer Perceptron MLP neural network was used to design and implement the controller. The error back propagation algorithm was used to train the neural network to learn the behavior of the mobile robot kinematic model. The neural kinematic controller is trained offline and then the weights of the neural network are adjusted online in order to find the required linear and angular velocities to guide the robot throughout the reference trajectory. The controller is implemented in LabView2011 software and then deployed to the mobile robot platform to allow for autonomous navigation. The simulation results and experimental results show that the proposed controller can successfully navigate the robot along the required path.</description><identifier>ISBN: 9781467331425</identifier><identifier>ISBN: 1467331422</identifier><identifier>EISBN: 1467331414</identifier><identifier>EISBN: 1467331430</identifier><identifier>EISBN: 9781467331432</identifier><identifier>EISBN: 9781467331418</identifier><identifier>DOI: 10.1109/ICCSCE.2012.6487220</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Controller ; LabVIEW ; National Instrument ; Neural Networks ; Nonholonomic Mobile Robot</subject><ispartof>2012 IEEE International Conference on Control System, Computing and Engineering, 2012, p.623-628</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-8e0954149d6c6cc978451083a595ac4ead166b14efc5b7b0ee6d31d84a9abe973</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6487220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6487220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Al-Shibaany, Z. Y.</creatorcontrib><creatorcontrib>Hedley, J.</creatorcontrib><creatorcontrib>Bicker, R.</creatorcontrib><title>Design of an adaptive neural kinematic controller for a National Instrument mobile robot system</title><title>2012 IEEE International Conference on Control System, Computing and Engineering</title><addtitle>ICCSCE</addtitle><description>The paper proposes an adaptive neural kinematic controller to guide a National Instrument starter kit robot, which is a nonholonomic differential drive mobile robot, to follow a predefined trajectory. The structure of the controller is based on a neural network topology. The Multi-Layer Perceptron MLP neural network was used to design and implement the controller. The error back propagation algorithm was used to train the neural network to learn the behavior of the mobile robot kinematic model. The neural kinematic controller is trained offline and then the weights of the neural network are adjusted online in order to find the required linear and angular velocities to guide the robot throughout the reference trajectory. The controller is implemented in LabView2011 software and then deployed to the mobile robot platform to allow for autonomous navigation. The simulation results and experimental results show that the proposed controller can successfully navigate the robot along the required path.</description><subject>Adaptive Controller</subject><subject>LabVIEW</subject><subject>National Instrument</subject><subject>Neural Networks</subject><subject>Nonholonomic Mobile Robot</subject><isbn>9781467331425</isbn><isbn>1467331422</isbn><isbn>1467331414</isbn><isbn>1467331430</isbn><isbn>9781467331432</isbn><isbn>9781467331418</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UFFLwzAYjIigzv6CveQPdCZpkjaPUqcbDH1Qn8fX9KtE22QkmbB_b8H5dNxxdxxHyJKzFefM3G_b9q1drwTjYqVlUwvBLsgtl7quKi65vCSFqZt_LtQ1KVL6YozNad0wdUP2j5jcp6dhoOAp9HDI7gepx2OEkX47jxNkZ6kNPscwjhjpECIF-jLLwc-erU85Hif0mU6hcyPSGLqQaTqljNMduRpgTFiccUE-ntbv7abcvT5v24ddaYVQuWyQGTUPNr222tp5tFScNRUoo8BKhJ5r3XGJg1Vd3TFE3Ve8byQY6NDU1YIs_3odIu4P0U0QT_vzJ9UvthhW0g</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Al-Shibaany, Z. Y.</creator><creator>Hedley, J.</creator><creator>Bicker, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Design of an adaptive neural kinematic controller for a National Instrument mobile robot system</title><author>Al-Shibaany, Z. Y. ; Hedley, J. ; Bicker, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-8e0954149d6c6cc978451083a595ac4ead166b14efc5b7b0ee6d31d84a9abe973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive Controller</topic><topic>LabVIEW</topic><topic>National Instrument</topic><topic>Neural Networks</topic><topic>Nonholonomic Mobile Robot</topic><toplevel>online_resources</toplevel><creatorcontrib>Al-Shibaany, Z. Y.</creatorcontrib><creatorcontrib>Hedley, J.</creatorcontrib><creatorcontrib>Bicker, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al-Shibaany, Z. Y.</au><au>Hedley, J.</au><au>Bicker, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of an adaptive neural kinematic controller for a National Instrument mobile robot system</atitle><btitle>2012 IEEE International Conference on Control System, Computing and Engineering</btitle><stitle>ICCSCE</stitle><date>2012-11</date><risdate>2012</risdate><spage>623</spage><epage>628</epage><pages>623-628</pages><isbn>9781467331425</isbn><isbn>1467331422</isbn><eisbn>1467331414</eisbn><eisbn>1467331430</eisbn><eisbn>9781467331432</eisbn><eisbn>9781467331418</eisbn><abstract>The paper proposes an adaptive neural kinematic controller to guide a National Instrument starter kit robot, which is a nonholonomic differential drive mobile robot, to follow a predefined trajectory. The structure of the controller is based on a neural network topology. The Multi-Layer Perceptron MLP neural network was used to design and implement the controller. The error back propagation algorithm was used to train the neural network to learn the behavior of the mobile robot kinematic model. The neural kinematic controller is trained offline and then the weights of the neural network are adjusted online in order to find the required linear and angular velocities to guide the robot throughout the reference trajectory. The controller is implemented in LabView2011 software and then deployed to the mobile robot platform to allow for autonomous navigation. The simulation results and experimental results show that the proposed controller can successfully navigate the robot along the required path.</abstract><pub>IEEE</pub><doi>10.1109/ICCSCE.2012.6487220</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467331425
ispartof 2012 IEEE International Conference on Control System, Computing and Engineering, 2012, p.623-628
issn
language eng
recordid cdi_ieee_primary_6487220
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive Controller
LabVIEW
National Instrument
Neural Networks
Nonholonomic Mobile Robot
title Design of an adaptive neural kinematic controller for a National Instrument mobile robot system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20an%20adaptive%20neural%20kinematic%20controller%20for%20a%20National%20Instrument%20mobile%20robot%20system&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Control%20System,%20Computing%20and%20Engineering&rft.au=Al-Shibaany,%20Z.%20Y.&rft.date=2012-11&rft.spage=623&rft.epage=628&rft.pages=623-628&rft.isbn=9781467331425&rft.isbn_list=1467331422&rft_id=info:doi/10.1109/ICCSCE.2012.6487220&rft_dat=%3Cieee_6IE%3E6487220%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467331414&rft.eisbn_list=1467331430&rft.eisbn_list=9781467331432&rft.eisbn_list=9781467331418&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6487220&rfr_iscdi=true