Feature extractor for the classification of approved Halal logo in Malaysia
This paper present a new feature extractors called the Fractionalized Principle Magnitude (FPM) that is evaluated in the classification of approved Halal logo with respect to classification accuracy and time consumptions. Feature can be classified into two group; global feature and local feature. In...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | |
container_start_page | 495 |
container_title | |
container_volume | |
creator | Saipullah, K. M. Ismail, N. A. Soo, Y. |
description | This paper present a new feature extractors called the Fractionalized Principle Magnitude (FPM) that is evaluated in the classification of approved Halal logo with respect to classification accuracy and time consumptions. Feature can be classified into two group; global feature and local feature. In this study, several feature extractors have been compared with the proposed method such as histogram of gradient (HOG), Hu moment, Zernike moment and wavelet co-occurrence histogram (WCH). The experiments are conducted on 50 different approved Halal logos. The result shows that proposed FPM method achieves the highest accuracy with 90.4% whereas HOG, Zernike moment, WCH and Hu moment achieve 75.2%, 64.4%, 47.2% 44.4% of accuracies, respectively. |
doi_str_mv | 10.1109/ICCSCE.2012.6487196 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6487196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6487196</ieee_id><sourcerecordid>6487196</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4103cc163791d374e5f9747e1abe97f35e1f4c68f577d6b6a33c2a834c3cb6093</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUdEUGueoJt5gcS5mb_MUkJrixUX6rrcTO7oSGxCMop9ewPWxeHwLb4Dh7EliAJAuNttXT_Xq6IUUBZGVRacOWPXoIyVEhSoc5Y5W_1zqS9ZNk0fQojZNpXQV-xhTZi-RuL0k0b0qR95mJPeifsOpymG6DHF_sD7wHEYxv6bWr7BDjve9W89jwf-ONNxinjDLgJ2E2WnXrDX9eql3uS7p_ttfbfLI1idcgVCeg9GWgettIp0cFZZAmzI2SA1QVDeVEFb25rGoJS-xEoqL31jhJMLtvzbjUS0H8b4ieNxf_ovfwEMqk6W</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature extractor for the classification of approved Halal logo in Malaysia</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saipullah, K. M. ; Ismail, N. A. ; Soo, Y.</creator><creatorcontrib>Saipullah, K. M. ; Ismail, N. A. ; Soo, Y.</creatorcontrib><description>This paper present a new feature extractors called the Fractionalized Principle Magnitude (FPM) that is evaluated in the classification of approved Halal logo with respect to classification accuracy and time consumptions. Feature can be classified into two group; global feature and local feature. In this study, several feature extractors have been compared with the proposed method such as histogram of gradient (HOG), Hu moment, Zernike moment and wavelet co-occurrence histogram (WCH). The experiments are conducted on 50 different approved Halal logos. The result shows that proposed FPM method achieves the highest accuracy with 90.4% whereas HOG, Zernike moment, WCH and Hu moment achieve 75.2%, 64.4%, 47.2% 44.4% of accuracies, respectively.</description><identifier>ISBN: 9781467331425</identifier><identifier>ISBN: 1467331422</identifier><identifier>EISBN: 1467331414</identifier><identifier>EISBN: 1467331430</identifier><identifier>EISBN: 9781467331432</identifier><identifier>EISBN: 9781467331418</identifier><identifier>DOI: 10.1109/ICCSCE.2012.6487196</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature Extractor ; Fourier Principle Magnitude ; logo classification</subject><ispartof>2012 IEEE International Conference on Control System, Computing and Engineering, 2012, p.495-500</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6487196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6487196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saipullah, K. M.</creatorcontrib><creatorcontrib>Ismail, N. A.</creatorcontrib><creatorcontrib>Soo, Y.</creatorcontrib><title>Feature extractor for the classification of approved Halal logo in Malaysia</title><title>2012 IEEE International Conference on Control System, Computing and Engineering</title><addtitle>ICCSCE</addtitle><description>This paper present a new feature extractors called the Fractionalized Principle Magnitude (FPM) that is evaluated in the classification of approved Halal logo with respect to classification accuracy and time consumptions. Feature can be classified into two group; global feature and local feature. In this study, several feature extractors have been compared with the proposed method such as histogram of gradient (HOG), Hu moment, Zernike moment and wavelet co-occurrence histogram (WCH). The experiments are conducted on 50 different approved Halal logos. The result shows that proposed FPM method achieves the highest accuracy with 90.4% whereas HOG, Zernike moment, WCH and Hu moment achieve 75.2%, 64.4%, 47.2% 44.4% of accuracies, respectively.</description><subject>Feature Extractor</subject><subject>Fourier Principle Magnitude</subject><subject>logo classification</subject><isbn>9781467331425</isbn><isbn>1467331422</isbn><isbn>1467331414</isbn><isbn>1467331430</isbn><isbn>9781467331432</isbn><isbn>9781467331418</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Kw0AUhUdEUGueoJt5gcS5mb_MUkJrixUX6rrcTO7oSGxCMop9ewPWxeHwLb4Dh7EliAJAuNttXT_Xq6IUUBZGVRacOWPXoIyVEhSoc5Y5W_1zqS9ZNk0fQojZNpXQV-xhTZi-RuL0k0b0qR95mJPeifsOpymG6DHF_sD7wHEYxv6bWr7BDjve9W89jwf-ONNxinjDLgJ2E2WnXrDX9eql3uS7p_ttfbfLI1idcgVCeg9GWgettIp0cFZZAmzI2SA1QVDeVEFb25rGoJS-xEoqL31jhJMLtvzbjUS0H8b4ieNxf_ovfwEMqk6W</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Saipullah, K. M.</creator><creator>Ismail, N. A.</creator><creator>Soo, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Feature extractor for the classification of approved Halal logo in Malaysia</title><author>Saipullah, K. M. ; Ismail, N. A. ; Soo, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4103cc163791d374e5f9747e1abe97f35e1f4c68f577d6b6a33c2a834c3cb6093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Feature Extractor</topic><topic>Fourier Principle Magnitude</topic><topic>logo classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Saipullah, K. M.</creatorcontrib><creatorcontrib>Ismail, N. A.</creatorcontrib><creatorcontrib>Soo, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saipullah, K. M.</au><au>Ismail, N. A.</au><au>Soo, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature extractor for the classification of approved Halal logo in Malaysia</atitle><btitle>2012 IEEE International Conference on Control System, Computing and Engineering</btitle><stitle>ICCSCE</stitle><date>2012-11</date><risdate>2012</risdate><spage>495</spage><epage>500</epage><pages>495-500</pages><isbn>9781467331425</isbn><isbn>1467331422</isbn><eisbn>1467331414</eisbn><eisbn>1467331430</eisbn><eisbn>9781467331432</eisbn><eisbn>9781467331418</eisbn><abstract>This paper present a new feature extractors called the Fractionalized Principle Magnitude (FPM) that is evaluated in the classification of approved Halal logo with respect to classification accuracy and time consumptions. Feature can be classified into two group; global feature and local feature. In this study, several feature extractors have been compared with the proposed method such as histogram of gradient (HOG), Hu moment, Zernike moment and wavelet co-occurrence histogram (WCH). The experiments are conducted on 50 different approved Halal logos. The result shows that proposed FPM method achieves the highest accuracy with 90.4% whereas HOG, Zernike moment, WCH and Hu moment achieve 75.2%, 64.4%, 47.2% 44.4% of accuracies, respectively.</abstract><pub>IEEE</pub><doi>10.1109/ICCSCE.2012.6487196</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467331425 |
ispartof | 2012 IEEE International Conference on Control System, Computing and Engineering, 2012, p.495-500 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6487196 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feature Extractor Fourier Principle Magnitude logo classification |
title | Feature extractor for the classification of approved Halal logo in Malaysia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature%20extractor%20for%20the%20classification%20of%20approved%20Halal%20logo%20in%20Malaysia&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Control%20System,%20Computing%20and%20Engineering&rft.au=Saipullah,%20K.%20M.&rft.date=2012-11&rft.spage=495&rft.epage=500&rft.pages=495-500&rft.isbn=9781467331425&rft.isbn_list=1467331422&rft_id=info:doi/10.1109/ICCSCE.2012.6487196&rft_dat=%3Cieee_6IE%3E6487196%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467331414&rft.eisbn_list=1467331430&rft.eisbn_list=9781467331432&rft.eisbn_list=9781467331418&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6487196&rfr_iscdi=true |