Motion estimation algorithm for periodic pattern objects based on spectral image analysis

In this paper, we propose a motion estimation algorithm for periodic pattern objects that conventional block matching based motion estimation algorithms cannot give reliable results. The proposed algorithm is based on spectral image analysis and statistical object motion calculation. The proposed al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kim, Seung-Gu, Ahn, Tae-Gyoung, Park, Se-Hyeok
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue
container_start_page 310
container_title
container_volume
creator Kim, Seung-Gu
Ahn, Tae-Gyoung
Park, Se-Hyeok
description In this paper, we propose a motion estimation algorithm for periodic pattern objects that conventional block matching based motion estimation algorithms cannot give reliable results. The proposed algorithm is based on spectral image analysis and statistical object motion calculation. The proposed algorithm doesn't significantly increase computational complexity because it uses Fast Fourier Transform and statistical methods rather than complex object segmentation and pixel matching calculations. Experimental results show effectiveness of proposed scheme with significantly reduced defects in image processing results.
doi_str_mv 10.1109/ICCE.2013.6486905
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_6486905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6486905</ieee_id><sourcerecordid>1786151901</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-bc75f3173225252fcae8d589145c8ea773b12cbe057091080034a725d3ca63a73</originalsourceid><addsrcrecordid>eNpFkD9PwzAQxc0_ibbwARCLR5YUnx3H8YiqApWKWGBgihznUlylcbDTod8ei1ZCN9yd3k9Pd4-QO2BzAKYfV4vFcs4ZiHmRl4Vm8oxMIS-UAFFwfU4mHGSZ5YzBxb8A7PIkCK3zazKNcZsIraWekK83PzrfU4yj25m_0XQbH9z4vaOtD3TA4HzjLB3MOGLoqa-3aMdIaxOxoYmPQ9qD6Wgy2CA1vekO0cUbctWaLuLtqc_I5_PyY_Gard9fVoundeaAizGrrZKtACU4l6laa7BsZKkhl7ZEo5SogdsamVRMAysZE7lRXDbCmkIYJWbk4eg7BP-zT39UOxctdp3p0e9jBaosQIJOqc3I_RF1iFgNIR0cDtUpSvEL6j5jpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1786151901</pqid></control><display><type>conference_proceeding</type><title>Motion estimation algorithm for periodic pattern objects based on spectral image analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kim, Seung-Gu ; Ahn, Tae-Gyoung ; Park, Se-Hyeok</creator><creatorcontrib>Kim, Seung-Gu ; Ahn, Tae-Gyoung ; Park, Se-Hyeok</creatorcontrib><description>In this paper, we propose a motion estimation algorithm for periodic pattern objects that conventional block matching based motion estimation algorithms cannot give reliable results. The proposed algorithm is based on spectral image analysis and statistical object motion calculation. The proposed algorithm doesn't significantly increase computational complexity because it uses Fast Fourier Transform and statistical methods rather than complex object segmentation and pixel matching calculations. Experimental results show effectiveness of proposed scheme with significantly reduced defects in image processing results.</description><identifier>ISSN: 2158-3994</identifier><identifier>ISBN: 1467313610</identifier><identifier>ISBN: 9781467313612</identifier><identifier>EISSN: 2158-4001</identifier><identifier>EISBN: 1467313629</identifier><identifier>EISBN: 9781467313636</identifier><identifier>EISBN: 1467313637</identifier><identifier>EISBN: 9781467313629</identifier><identifier>DOI: 10.1109/ICCE.2013.6486905</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Consumption ; Electronics ; Image analysis ; Matching ; Mathematical analysis ; Motion estimation ; Motion simulation ; Pattern matching ; Reliability ; Spectra ; Vectors</subject><ispartof>2013 IEEE International Conference on Consumer Electronics (ICCE), 2013, p.310-311</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6486905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,2052,27905,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6486905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Seung-Gu</creatorcontrib><creatorcontrib>Ahn, Tae-Gyoung</creatorcontrib><creatorcontrib>Park, Se-Hyeok</creatorcontrib><title>Motion estimation algorithm for periodic pattern objects based on spectral image analysis</title><title>2013 IEEE International Conference on Consumer Electronics (ICCE)</title><addtitle>ICCE</addtitle><description>In this paper, we propose a motion estimation algorithm for periodic pattern objects that conventional block matching based motion estimation algorithms cannot give reliable results. The proposed algorithm is based on spectral image analysis and statistical object motion calculation. The proposed algorithm doesn't significantly increase computational complexity because it uses Fast Fourier Transform and statistical methods rather than complex object segmentation and pixel matching calculations. Experimental results show effectiveness of proposed scheme with significantly reduced defects in image processing results.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Consumption</subject><subject>Electronics</subject><subject>Image analysis</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Motion estimation</subject><subject>Motion simulation</subject><subject>Pattern matching</subject><subject>Reliability</subject><subject>Spectra</subject><subject>Vectors</subject><issn>2158-3994</issn><issn>2158-4001</issn><isbn>1467313610</isbn><isbn>9781467313612</isbn><isbn>1467313629</isbn><isbn>9781467313636</isbn><isbn>1467313637</isbn><isbn>9781467313629</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkD9PwzAQxc0_ibbwARCLR5YUnx3H8YiqApWKWGBgihznUlylcbDTod8ei1ZCN9yd3k9Pd4-QO2BzAKYfV4vFcs4ZiHmRl4Vm8oxMIS-UAFFwfU4mHGSZ5YzBxb8A7PIkCK3zazKNcZsIraWekK83PzrfU4yj25m_0XQbH9z4vaOtD3TA4HzjLB3MOGLoqa-3aMdIaxOxoYmPQ9qD6Wgy2CA1vekO0cUbctWaLuLtqc_I5_PyY_Gard9fVoundeaAizGrrZKtACU4l6laa7BsZKkhl7ZEo5SogdsamVRMAysZE7lRXDbCmkIYJWbk4eg7BP-zT39UOxctdp3p0e9jBaosQIJOqc3I_RF1iFgNIR0cDtUpSvEL6j5jpg</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Kim, Seung-Gu</creator><creator>Ahn, Tae-Gyoung</creator><creator>Park, Se-Hyeok</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Motion estimation algorithm for periodic pattern objects based on spectral image analysis</title><author>Kim, Seung-Gu ; Ahn, Tae-Gyoung ; Park, Se-Hyeok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-bc75f3173225252fcae8d589145c8ea773b12cbe057091080034a725d3ca63a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Consumption</topic><topic>Electronics</topic><topic>Image analysis</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Motion estimation</topic><topic>Motion simulation</topic><topic>Pattern matching</topic><topic>Reliability</topic><topic>Spectra</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seung-Gu</creatorcontrib><creatorcontrib>Ahn, Tae-Gyoung</creatorcontrib><creatorcontrib>Park, Se-Hyeok</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Seung-Gu</au><au>Ahn, Tae-Gyoung</au><au>Park, Se-Hyeok</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Motion estimation algorithm for periodic pattern objects based on spectral image analysis</atitle><btitle>2013 IEEE International Conference on Consumer Electronics (ICCE)</btitle><stitle>ICCE</stitle><date>2013-01</date><risdate>2013</risdate><spage>310</spage><epage>311</epage><pages>310-311</pages><issn>2158-3994</issn><eissn>2158-4001</eissn><isbn>1467313610</isbn><isbn>9781467313612</isbn><eisbn>1467313629</eisbn><eisbn>9781467313636</eisbn><eisbn>1467313637</eisbn><eisbn>9781467313629</eisbn><abstract>In this paper, we propose a motion estimation algorithm for periodic pattern objects that conventional block matching based motion estimation algorithms cannot give reliable results. The proposed algorithm is based on spectral image analysis and statistical object motion calculation. The proposed algorithm doesn't significantly increase computational complexity because it uses Fast Fourier Transform and statistical methods rather than complex object segmentation and pixel matching calculations. Experimental results show effectiveness of proposed scheme with significantly reduced defects in image processing results.</abstract><pub>IEEE</pub><doi>10.1109/ICCE.2013.6486905</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-3994
ispartof 2013 IEEE International Conference on Consumer Electronics (ICCE), 2013, p.310-311
issn 2158-3994
2158-4001
language eng
recordid cdi_ieee_primary_6486905
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Algorithms
Consumption
Electronics
Image analysis
Matching
Mathematical analysis
Motion estimation
Motion simulation
Pattern matching
Reliability
Spectra
Vectors
title Motion estimation algorithm for periodic pattern objects based on spectral image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Motion%20estimation%20algorithm%20for%20periodic%20pattern%20objects%20based%20on%20spectral%20image%20analysis&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20(ICCE)&rft.au=Kim,%20Seung-Gu&rft.date=2013-01&rft.spage=310&rft.epage=311&rft.pages=310-311&rft.issn=2158-3994&rft.eissn=2158-4001&rft.isbn=1467313610&rft.isbn_list=9781467313612&rft_id=info:doi/10.1109/ICCE.2013.6486905&rft_dat=%3Cproquest_6IE%3E1786151901%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467313629&rft.eisbn_list=9781467313636&rft.eisbn_list=1467313637&rft.eisbn_list=9781467313629&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786151901&rft_id=info:pmid/&rft_ieee_id=6486905&rfr_iscdi=true