Motion estimation algorithm for periodic pattern objects based on spectral image analysis
In this paper, we propose a motion estimation algorithm for periodic pattern objects that conventional block matching based motion estimation algorithms cannot give reliable results. The proposed algorithm is based on spectral image analysis and statistical object motion calculation. The proposed al...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | |
container_start_page | 310 |
container_title | |
container_volume | |
creator | Kim, Seung-Gu Ahn, Tae-Gyoung Park, Se-Hyeok |
description | In this paper, we propose a motion estimation algorithm for periodic pattern objects that conventional block matching based motion estimation algorithms cannot give reliable results. The proposed algorithm is based on spectral image analysis and statistical object motion calculation. The proposed algorithm doesn't significantly increase computational complexity because it uses Fast Fourier Transform and statistical methods rather than complex object segmentation and pixel matching calculations. Experimental results show effectiveness of proposed scheme with significantly reduced defects in image processing results. |
doi_str_mv | 10.1109/ICCE.2013.6486905 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_6486905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6486905</ieee_id><sourcerecordid>1786151901</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-bc75f3173225252fcae8d589145c8ea773b12cbe057091080034a725d3ca63a73</originalsourceid><addsrcrecordid>eNpFkD9PwzAQxc0_ibbwARCLR5YUnx3H8YiqApWKWGBgihznUlylcbDTod8ei1ZCN9yd3k9Pd4-QO2BzAKYfV4vFcs4ZiHmRl4Vm8oxMIS-UAFFwfU4mHGSZ5YzBxb8A7PIkCK3zazKNcZsIraWekK83PzrfU4yj25m_0XQbH9z4vaOtD3TA4HzjLB3MOGLoqa-3aMdIaxOxoYmPQ9qD6Wgy2CA1vekO0cUbctWaLuLtqc_I5_PyY_Gard9fVoundeaAizGrrZKtACU4l6laa7BsZKkhl7ZEo5SogdsamVRMAysZE7lRXDbCmkIYJWbk4eg7BP-zT39UOxctdp3p0e9jBaosQIJOqc3I_RF1iFgNIR0cDtUpSvEL6j5jpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1786151901</pqid></control><display><type>conference_proceeding</type><title>Motion estimation algorithm for periodic pattern objects based on spectral image analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kim, Seung-Gu ; Ahn, Tae-Gyoung ; Park, Se-Hyeok</creator><creatorcontrib>Kim, Seung-Gu ; Ahn, Tae-Gyoung ; Park, Se-Hyeok</creatorcontrib><description>In this paper, we propose a motion estimation algorithm for periodic pattern objects that conventional block matching based motion estimation algorithms cannot give reliable results. The proposed algorithm is based on spectral image analysis and statistical object motion calculation. The proposed algorithm doesn't significantly increase computational complexity because it uses Fast Fourier Transform and statistical methods rather than complex object segmentation and pixel matching calculations. Experimental results show effectiveness of proposed scheme with significantly reduced defects in image processing results.</description><identifier>ISSN: 2158-3994</identifier><identifier>ISBN: 1467313610</identifier><identifier>ISBN: 9781467313612</identifier><identifier>EISSN: 2158-4001</identifier><identifier>EISBN: 1467313629</identifier><identifier>EISBN: 9781467313636</identifier><identifier>EISBN: 1467313637</identifier><identifier>EISBN: 9781467313629</identifier><identifier>DOI: 10.1109/ICCE.2013.6486905</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Consumption ; Electronics ; Image analysis ; Matching ; Mathematical analysis ; Motion estimation ; Motion simulation ; Pattern matching ; Reliability ; Spectra ; Vectors</subject><ispartof>2013 IEEE International Conference on Consumer Electronics (ICCE), 2013, p.310-311</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6486905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,2052,27905,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6486905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Seung-Gu</creatorcontrib><creatorcontrib>Ahn, Tae-Gyoung</creatorcontrib><creatorcontrib>Park, Se-Hyeok</creatorcontrib><title>Motion estimation algorithm for periodic pattern objects based on spectral image analysis</title><title>2013 IEEE International Conference on Consumer Electronics (ICCE)</title><addtitle>ICCE</addtitle><description>In this paper, we propose a motion estimation algorithm for periodic pattern objects that conventional block matching based motion estimation algorithms cannot give reliable results. The proposed algorithm is based on spectral image analysis and statistical object motion calculation. The proposed algorithm doesn't significantly increase computational complexity because it uses Fast Fourier Transform and statistical methods rather than complex object segmentation and pixel matching calculations. Experimental results show effectiveness of proposed scheme with significantly reduced defects in image processing results.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Consumption</subject><subject>Electronics</subject><subject>Image analysis</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Motion estimation</subject><subject>Motion simulation</subject><subject>Pattern matching</subject><subject>Reliability</subject><subject>Spectra</subject><subject>Vectors</subject><issn>2158-3994</issn><issn>2158-4001</issn><isbn>1467313610</isbn><isbn>9781467313612</isbn><isbn>1467313629</isbn><isbn>9781467313636</isbn><isbn>1467313637</isbn><isbn>9781467313629</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkD9PwzAQxc0_ibbwARCLR5YUnx3H8YiqApWKWGBgihznUlylcbDTod8ei1ZCN9yd3k9Pd4-QO2BzAKYfV4vFcs4ZiHmRl4Vm8oxMIS-UAFFwfU4mHGSZ5YzBxb8A7PIkCK3zazKNcZsIraWekK83PzrfU4yj25m_0XQbH9z4vaOtD3TA4HzjLB3MOGLoqa-3aMdIaxOxoYmPQ9qD6Wgy2CA1vekO0cUbctWaLuLtqc_I5_PyY_Gard9fVoundeaAizGrrZKtACU4l6laa7BsZKkhl7ZEo5SogdsamVRMAysZE7lRXDbCmkIYJWbk4eg7BP-zT39UOxctdp3p0e9jBaosQIJOqc3I_RF1iFgNIR0cDtUpSvEL6j5jpg</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Kim, Seung-Gu</creator><creator>Ahn, Tae-Gyoung</creator><creator>Park, Se-Hyeok</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Motion estimation algorithm for periodic pattern objects based on spectral image analysis</title><author>Kim, Seung-Gu ; Ahn, Tae-Gyoung ; Park, Se-Hyeok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-bc75f3173225252fcae8d589145c8ea773b12cbe057091080034a725d3ca63a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Consumption</topic><topic>Electronics</topic><topic>Image analysis</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Motion estimation</topic><topic>Motion simulation</topic><topic>Pattern matching</topic><topic>Reliability</topic><topic>Spectra</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seung-Gu</creatorcontrib><creatorcontrib>Ahn, Tae-Gyoung</creatorcontrib><creatorcontrib>Park, Se-Hyeok</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Seung-Gu</au><au>Ahn, Tae-Gyoung</au><au>Park, Se-Hyeok</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Motion estimation algorithm for periodic pattern objects based on spectral image analysis</atitle><btitle>2013 IEEE International Conference on Consumer Electronics (ICCE)</btitle><stitle>ICCE</stitle><date>2013-01</date><risdate>2013</risdate><spage>310</spage><epage>311</epage><pages>310-311</pages><issn>2158-3994</issn><eissn>2158-4001</eissn><isbn>1467313610</isbn><isbn>9781467313612</isbn><eisbn>1467313629</eisbn><eisbn>9781467313636</eisbn><eisbn>1467313637</eisbn><eisbn>9781467313629</eisbn><abstract>In this paper, we propose a motion estimation algorithm for periodic pattern objects that conventional block matching based motion estimation algorithms cannot give reliable results. The proposed algorithm is based on spectral image analysis and statistical object motion calculation. The proposed algorithm doesn't significantly increase computational complexity because it uses Fast Fourier Transform and statistical methods rather than complex object segmentation and pixel matching calculations. Experimental results show effectiveness of proposed scheme with significantly reduced defects in image processing results.</abstract><pub>IEEE</pub><doi>10.1109/ICCE.2013.6486905</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2158-3994 |
ispartof | 2013 IEEE International Conference on Consumer Electronics (ICCE), 2013, p.310-311 |
issn | 2158-3994 2158-4001 |
language | eng |
recordid | cdi_ieee_primary_6486905 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Algorithms Consumption Electronics Image analysis Matching Mathematical analysis Motion estimation Motion simulation Pattern matching Reliability Spectra Vectors |
title | Motion estimation algorithm for periodic pattern objects based on spectral image analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Motion%20estimation%20algorithm%20for%20periodic%20pattern%20objects%20based%20on%20spectral%20image%20analysis&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20(ICCE)&rft.au=Kim,%20Seung-Gu&rft.date=2013-01&rft.spage=310&rft.epage=311&rft.pages=310-311&rft.issn=2158-3994&rft.eissn=2158-4001&rft.isbn=1467313610&rft.isbn_list=9781467313612&rft_id=info:doi/10.1109/ICCE.2013.6486905&rft_dat=%3Cproquest_6IE%3E1786151901%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467313629&rft.eisbn_list=9781467313636&rft.eisbn_list=1467313637&rft.eisbn_list=9781467313629&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786151901&rft_id=info:pmid/&rft_ieee_id=6486905&rfr_iscdi=true |