Presentation of uncertain information with help of canonically conjugate Fuzzy subsets
In modern world we mostly deal with two type uncertainty based on vagueness and ambiguity accordingly. Modeling situation with first type uncertainty mostly based on Fuzzy sets and degree of fuzziness. Major inconvenience with fuzzy modeling is based on expert estimations, we'll need additional...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Tsintsadze, M. |
description | In modern world we mostly deal with two type uncertainty based on vagueness and ambiguity accordingly. Modeling situation with first type uncertainty mostly based on Fuzzy sets and degree of fuzziness. Major inconvenience with fuzzy modeling is based on expert estimations, we'll need additional criteria to choose "right" expert, with "right" estimations. When there is not enough information on property we'd like to model, we are offering to find canonically conjugate one that would be easier to describe and is completing the information about object. We will construct model that would be "mean"-ed: based on expert estimation, canonically conjugate property and optimality condition. |
doi_str_mv | 10.1109/ICPCI.2012.6486272 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6486272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6486272</ieee_id><sourcerecordid>6486272</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-50a350b6281975f0a219af5c7beacfac7be2a4d2b334dc8f538108612cc12c3f3</originalsourceid><addsrcrecordid>eNo1UM1Kw0AYXBFBrXkBvewLJO5_NkcJVgMFe1Cv5ct2125JNyW7QdKnt6X1MAzD_BwGoUdKCkpJ9dzUy7opGKGsUEIrVrIrlFWlpkKVXEjC1DW6_xdE36Isxi0h5FhWuhJ36Hs52GhDguT7gHuHx2DskMAH7IPrh93Z-PVpgze2258iBkIfvIGum7Dpw3b8gWTxfDwcJhzHNtoUH9CNgy7a7MIz9DV__azf88XHW1O_LHJPS5lySYBL0iqmaVVKR4DRCpw0ZWvBODgxA7FmLedibbSTXFOiFWXGHMEdn6Gn86631q72g9_BMK0uV_A_uzJUHg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Presentation of uncertain information with help of canonically conjugate Fuzzy subsets</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tsintsadze, M.</creator><creatorcontrib>Tsintsadze, M.</creatorcontrib><description>In modern world we mostly deal with two type uncertainty based on vagueness and ambiguity accordingly. Modeling situation with first type uncertainty mostly based on Fuzzy sets and degree of fuzziness. Major inconvenience with fuzzy modeling is based on expert estimations, we'll need additional criteria to choose "right" expert, with "right" estimations. When there is not enough information on property we'd like to model, we are offering to find canonically conjugate one that would be easier to describe and is completing the information about object. We will construct model that would be "mean"-ed: based on expert estimation, canonically conjugate property and optimality condition.</description><identifier>ISBN: 1467345008</identifier><identifier>ISBN: 9781467345002</identifier><identifier>EISBN: 9781467345026</identifier><identifier>EISBN: 1467345024</identifier><identifier>DOI: 10.1109/ICPCI.2012.6486272</identifier><language>eng</language><publisher>IEEE</publisher><subject>fuzzy differential equations ; fuzzy information ; optimal model ; uncertainty</subject><ispartof>2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI), 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6486272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6486272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsintsadze, M.</creatorcontrib><title>Presentation of uncertain information with help of canonically conjugate Fuzzy subsets</title><title>2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI)</title><addtitle>ICPCI</addtitle><description>In modern world we mostly deal with two type uncertainty based on vagueness and ambiguity accordingly. Modeling situation with first type uncertainty mostly based on Fuzzy sets and degree of fuzziness. Major inconvenience with fuzzy modeling is based on expert estimations, we'll need additional criteria to choose "right" expert, with "right" estimations. When there is not enough information on property we'd like to model, we are offering to find canonically conjugate one that would be easier to describe and is completing the information about object. We will construct model that would be "mean"-ed: based on expert estimation, canonically conjugate property and optimality condition.</description><subject>fuzzy differential equations</subject><subject>fuzzy information</subject><subject>optimal model</subject><subject>uncertainty</subject><isbn>1467345008</isbn><isbn>9781467345002</isbn><isbn>9781467345026</isbn><isbn>1467345024</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1Kw0AYXBFBrXkBvewLJO5_NkcJVgMFe1Cv5ct2125JNyW7QdKnt6X1MAzD_BwGoUdKCkpJ9dzUy7opGKGsUEIrVrIrlFWlpkKVXEjC1DW6_xdE36Isxi0h5FhWuhJ36Hs52GhDguT7gHuHx2DskMAH7IPrh93Z-PVpgze2258iBkIfvIGum7Dpw3b8gWTxfDwcJhzHNtoUH9CNgy7a7MIz9DV__azf88XHW1O_LHJPS5lySYBL0iqmaVVKR4DRCpw0ZWvBODgxA7FmLedibbSTXFOiFWXGHMEdn6Gn86631q72g9_BMK0uV_A_uzJUHg</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Tsintsadze, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Presentation of uncertain information with help of canonically conjugate Fuzzy subsets</title><author>Tsintsadze, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-50a350b6281975f0a219af5c7beacfac7be2a4d2b334dc8f538108612cc12c3f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>fuzzy differential equations</topic><topic>fuzzy information</topic><topic>optimal model</topic><topic>uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsintsadze, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsintsadze, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Presentation of uncertain information with help of canonically conjugate Fuzzy subsets</atitle><btitle>2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI)</btitle><stitle>ICPCI</stitle><date>2012-09</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1467345008</isbn><isbn>9781467345002</isbn><eisbn>9781467345026</eisbn><eisbn>1467345024</eisbn><abstract>In modern world we mostly deal with two type uncertainty based on vagueness and ambiguity accordingly. Modeling situation with first type uncertainty mostly based on Fuzzy sets and degree of fuzziness. Major inconvenience with fuzzy modeling is based on expert estimations, we'll need additional criteria to choose "right" expert, with "right" estimations. When there is not enough information on property we'd like to model, we are offering to find canonically conjugate one that would be easier to describe and is completing the information about object. We will construct model that would be "mean"-ed: based on expert estimation, canonically conjugate property and optimality condition.</abstract><pub>IEEE</pub><doi>10.1109/ICPCI.2012.6486272</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467345008 |
ispartof | 2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI), 2012, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6486272 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | fuzzy differential equations fuzzy information optimal model uncertainty |
title | Presentation of uncertain information with help of canonically conjugate Fuzzy subsets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Presentation%20of%20uncertain%20information%20with%20help%20of%20canonically%20conjugate%20Fuzzy%20subsets&rft.btitle=2012%20IV%20International%20Conference%20%22Problems%20of%20Cybernetics%20and%20Informatics%22%20(PCI)&rft.au=Tsintsadze,%20M.&rft.date=2012-09&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1467345008&rft.isbn_list=9781467345002&rft_id=info:doi/10.1109/ICPCI.2012.6486272&rft_dat=%3Cieee_6IE%3E6486272%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467345026&rft.eisbn_list=1467345024&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6486272&rfr_iscdi=true |