Smarter security in the smart grid

A new formulation for detection of false data injection attacks in the smart grid is introduced. The attack detection problem is posed as a statistical learning problem in which the observed measurements are classified as being either attacked or secure. The proposed approach provides an attack dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ozay, M., Esnaola, I., Yarman Vural, Fatos T., Kulkarni, S. R., Poor, H. Vincent
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue
container_start_page 312
container_title
container_volume
creator Ozay, M.
Esnaola, I.
Yarman Vural, Fatos T.
Kulkarni, S. R.
Poor, H. Vincent
description A new formulation for detection of false data injection attacks in the smart grid is introduced. The attack detection problem is posed as a statistical learning problem in which the observed measurements are classified as being either attacked or secure. The proposed approach provides an attack detection framework that surmounts over the constraints arising due to the sparse structure of the problem and implicitly exploits any available prior knowledge about the system. Specifically, three supervised learning algorithms are presented. These procedures operate by first observing the power system in order to construct a training dataset which is later used to detect the attacks in new observations. In order to assess the validity of the proposed techniques, the behavior of the proposed algorithms is examined on IEEE test systems.
doi_str_mv 10.1109/SmartGridComm.2012.6486002
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6486002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6486002</ieee_id><sourcerecordid>6486002</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1aa011d48ada293702b11733583a7af6d589a2e2f944f576ae273835d18dc7f03</originalsourceid><addsrcrecordid>eNotjz9PwzAUxI0QElDyCVis7gnv-fnviCJokSox0M6VqW0wIoDsMPTbEyDT6W743R1jS4QOEdzN0-DLuCo59J_D0AlA0WlpNYA4YZcotSFw4NQpa5yxs0egc9bU-gYAiEKSoQu2_CPFwms8fJc8Hnn-4ONr5PU35y9TxRU7S_69xmbWBdvd3237dbt5XD30t5s2o1Fji95P2CCtD144MiCeEQ2RsuSNTzoo67yIIjkpkzLaR2HIkgpow8EkoAW7_ufmGOP-q-RpwXE_36Ifji9CVQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Smarter security in the smart grid</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ozay, M. ; Esnaola, I. ; Yarman Vural, Fatos T. ; Kulkarni, S. R. ; Poor, H. Vincent</creator><creatorcontrib>Ozay, M. ; Esnaola, I. ; Yarman Vural, Fatos T. ; Kulkarni, S. R. ; Poor, H. Vincent</creatorcontrib><description>A new formulation for detection of false data injection attacks in the smart grid is introduced. The attack detection problem is posed as a statistical learning problem in which the observed measurements are classified as being either attacked or secure. The proposed approach provides an attack detection framework that surmounts over the constraints arising due to the sparse structure of the problem and implicitly exploits any available prior knowledge about the system. Specifically, three supervised learning algorithms are presented. These procedures operate by first observing the power system in order to construct a training dataset which is later used to detect the attacks in new observations. In order to assess the validity of the proposed techniques, the behavior of the proposed algorithms is examined on IEEE test systems.</description><identifier>ISBN: 9781467309103</identifier><identifier>ISBN: 1467309109</identifier><identifier>EISBN: 1467309095</identifier><identifier>EISBN: 9781467309097</identifier><identifier>DOI: 10.1109/SmartGridComm.2012.6486002</identifier><language>eng</language><publisher>IEEE</publisher><subject>attack detection ; classification ; convex optimization ; Estimation ; Jacobian matrices ; Kernel ; Logistics ; machine learning ; Smart grid security ; Statistical learning ; Support vector machines ; Vectors</subject><ispartof>2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), 2012, p.312-317</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6486002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6486002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ozay, M.</creatorcontrib><creatorcontrib>Esnaola, I.</creatorcontrib><creatorcontrib>Yarman Vural, Fatos T.</creatorcontrib><creatorcontrib>Kulkarni, S. R.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><title>Smarter security in the smart grid</title><title>2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)</title><addtitle>SmartGridComm</addtitle><description>A new formulation for detection of false data injection attacks in the smart grid is introduced. The attack detection problem is posed as a statistical learning problem in which the observed measurements are classified as being either attacked or secure. The proposed approach provides an attack detection framework that surmounts over the constraints arising due to the sparse structure of the problem and implicitly exploits any available prior knowledge about the system. Specifically, three supervised learning algorithms are presented. These procedures operate by first observing the power system in order to construct a training dataset which is later used to detect the attacks in new observations. In order to assess the validity of the proposed techniques, the behavior of the proposed algorithms is examined on IEEE test systems.</description><subject>attack detection</subject><subject>classification</subject><subject>convex optimization</subject><subject>Estimation</subject><subject>Jacobian matrices</subject><subject>Kernel</subject><subject>Logistics</subject><subject>machine learning</subject><subject>Smart grid security</subject><subject>Statistical learning</subject><subject>Support vector machines</subject><subject>Vectors</subject><isbn>9781467309103</isbn><isbn>1467309109</isbn><isbn>1467309095</isbn><isbn>9781467309097</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjz9PwzAUxI0QElDyCVis7gnv-fnviCJokSox0M6VqW0wIoDsMPTbEyDT6W743R1jS4QOEdzN0-DLuCo59J_D0AlA0WlpNYA4YZcotSFw4NQpa5yxs0egc9bU-gYAiEKSoQu2_CPFwms8fJc8Hnn-4ONr5PU35y9TxRU7S_69xmbWBdvd3237dbt5XD30t5s2o1Fji95P2CCtD144MiCeEQ2RsuSNTzoo67yIIjkpkzLaR2HIkgpow8EkoAW7_ufmGOP-q-RpwXE_36Ifji9CVQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Ozay, M.</creator><creator>Esnaola, I.</creator><creator>Yarman Vural, Fatos T.</creator><creator>Kulkarni, S. R.</creator><creator>Poor, H. Vincent</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Smarter security in the smart grid</title><author>Ozay, M. ; Esnaola, I. ; Yarman Vural, Fatos T. ; Kulkarni, S. R. ; Poor, H. Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1aa011d48ada293702b11733583a7af6d589a2e2f944f576ae273835d18dc7f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>attack detection</topic><topic>classification</topic><topic>convex optimization</topic><topic>Estimation</topic><topic>Jacobian matrices</topic><topic>Kernel</topic><topic>Logistics</topic><topic>machine learning</topic><topic>Smart grid security</topic><topic>Statistical learning</topic><topic>Support vector machines</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozay, M.</creatorcontrib><creatorcontrib>Esnaola, I.</creatorcontrib><creatorcontrib>Yarman Vural, Fatos T.</creatorcontrib><creatorcontrib>Kulkarni, S. R.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozay, M.</au><au>Esnaola, I.</au><au>Yarman Vural, Fatos T.</au><au>Kulkarni, S. R.</au><au>Poor, H. Vincent</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Smarter security in the smart grid</atitle><btitle>2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)</btitle><stitle>SmartGridComm</stitle><date>2012-11</date><risdate>2012</risdate><spage>312</spage><epage>317</epage><pages>312-317</pages><isbn>9781467309103</isbn><isbn>1467309109</isbn><eisbn>1467309095</eisbn><eisbn>9781467309097</eisbn><abstract>A new formulation for detection of false data injection attacks in the smart grid is introduced. The attack detection problem is posed as a statistical learning problem in which the observed measurements are classified as being either attacked or secure. The proposed approach provides an attack detection framework that surmounts over the constraints arising due to the sparse structure of the problem and implicitly exploits any available prior knowledge about the system. Specifically, three supervised learning algorithms are presented. These procedures operate by first observing the power system in order to construct a training dataset which is later used to detect the attacks in new observations. In order to assess the validity of the proposed techniques, the behavior of the proposed algorithms is examined on IEEE test systems.</abstract><pub>IEEE</pub><doi>10.1109/SmartGridComm.2012.6486002</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467309103
ispartof 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), 2012, p.312-317
issn
language eng
recordid cdi_ieee_primary_6486002
source IEEE Electronic Library (IEL) Conference Proceedings
subjects attack detection
classification
convex optimization
Estimation
Jacobian matrices
Kernel
Logistics
machine learning
Smart grid security
Statistical learning
Support vector machines
Vectors
title Smarter security in the smart grid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Smarter%20security%20in%20the%20smart%20grid&rft.btitle=2012%20IEEE%20Third%20International%20Conference%20on%20Smart%20Grid%20Communications%20(SmartGridComm)&rft.au=Ozay,%20M.&rft.date=2012-11&rft.spage=312&rft.epage=317&rft.pages=312-317&rft.isbn=9781467309103&rft.isbn_list=1467309109&rft_id=info:doi/10.1109/SmartGridComm.2012.6486002&rft_dat=%3Cieee_6IE%3E6486002%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467309095&rft.eisbn_list=9781467309097&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6486002&rfr_iscdi=true