An optimization approach for 3D environment mapping using normal vector uncertainty

In this paper a novel approach for 3D environment mapping using registered robot poses is presented. The proposed algorithm focuses on improving the quality of robot generated 3D maps by incorporating the uncertainty of 3D points and propagating it into the normal vectors of surfaces. The uncertaint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khan, S., Mitsou, N., Wollherr, D., Tzafestas, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 846
container_issue
container_start_page 841
container_title
container_volume
creator Khan, S.
Mitsou, N.
Wollherr, D.
Tzafestas, C.
description In this paper a novel approach for 3D environment mapping using registered robot poses is presented. The proposed algorithm focuses on improving the quality of robot generated 3D maps by incorporating the uncertainty of 3D points and propagating it into the normal vectors of surfaces. The uncertainty of normal vectors is an indicator of the quality of the detected surface. A controlled random search algorithm is applied to optimize a non-convex function of uncertain normal vectors and number of clusters in order to find the optimal threshold parameter for the segmentation process. This approach leads to an improved cluster coherence and thus better maps.
doi_str_mv 10.1109/ICARCV.2012.6485267
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6485267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6485267</ieee_id><sourcerecordid>6485267</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c497da2abf54e9fd2c917e0341adba682af6c74b3812c321c67858a2be5f0daf3</originalsourceid><addsrcrecordid>eNo1UNtKxDAUjIigrv2CfckPtObWJH1c6hUWBG-vy2maaGSblDS7sH69FdeXGYaZcxgGoSUlFaWkuX5sV8_te8UIZZUUumZSnaBLKqTiVCumT1HRKP2vqTxHxTR9EULma6kJu0Avq4DjmP3gvyH7GDCMY4pgPrGLCfMbbMPepxgGGzIeZtOHD7ybfjHENMAW763Jc3QXjE0ZfMiHK3TmYDvZ4sgL9HZ3-9o-lOun-7nxuvRU1bk0olE9MOhcLWzjemYaqizhgkLfgdQMnDRKdFxTZjijRipda2CdrR3pwfEFWv799dbazZj8AOmwOe7AfwDMOlNu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An optimization approach for 3D environment mapping using normal vector uncertainty</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khan, S. ; Mitsou, N. ; Wollherr, D. ; Tzafestas, C.</creator><creatorcontrib>Khan, S. ; Mitsou, N. ; Wollherr, D. ; Tzafestas, C.</creatorcontrib><description>In this paper a novel approach for 3D environment mapping using registered robot poses is presented. The proposed algorithm focuses on improving the quality of robot generated 3D maps by incorporating the uncertainty of 3D points and propagating it into the normal vectors of surfaces. The uncertainty of normal vectors is an indicator of the quality of the detected surface. A controlled random search algorithm is applied to optimize a non-convex function of uncertain normal vectors and number of clusters in order to find the optimal threshold parameter for the segmentation process. This approach leads to an improved cluster coherence and thus better maps.</description><identifier>ISBN: 9781467318716</identifier><identifier>ISBN: 146731871X</identifier><identifier>EISBN: 1467318728</identifier><identifier>EISBN: 9781467318723</identifier><identifier>EISBN: 9781467318709</identifier><identifier>EISBN: 1467318701</identifier><identifier>DOI: 10.1109/ICARCV.2012.6485267</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Cost function ; Robot sensing systems ; Uncertainty ; Vectors</subject><ispartof>2012 12th International Conference on Control Automation Robotics &amp; Vision (ICARCV), 2012, p.841-846</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6485267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6485267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, S.</creatorcontrib><creatorcontrib>Mitsou, N.</creatorcontrib><creatorcontrib>Wollherr, D.</creatorcontrib><creatorcontrib>Tzafestas, C.</creatorcontrib><title>An optimization approach for 3D environment mapping using normal vector uncertainty</title><title>2012 12th International Conference on Control Automation Robotics &amp; Vision (ICARCV)</title><addtitle>ICARCV</addtitle><description>In this paper a novel approach for 3D environment mapping using registered robot poses is presented. The proposed algorithm focuses on improving the quality of robot generated 3D maps by incorporating the uncertainty of 3D points and propagating it into the normal vectors of surfaces. The uncertainty of normal vectors is an indicator of the quality of the detected surface. A controlled random search algorithm is applied to optimize a non-convex function of uncertain normal vectors and number of clusters in order to find the optimal threshold parameter for the segmentation process. This approach leads to an improved cluster coherence and thus better maps.</description><subject>Clustering algorithms</subject><subject>Cost function</subject><subject>Robot sensing systems</subject><subject>Uncertainty</subject><subject>Vectors</subject><isbn>9781467318716</isbn><isbn>146731871X</isbn><isbn>1467318728</isbn><isbn>9781467318723</isbn><isbn>9781467318709</isbn><isbn>1467318701</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKxDAUjIigrv2CfckPtObWJH1c6hUWBG-vy2maaGSblDS7sH69FdeXGYaZcxgGoSUlFaWkuX5sV8_te8UIZZUUumZSnaBLKqTiVCumT1HRKP2vqTxHxTR9EULma6kJu0Avq4DjmP3gvyH7GDCMY4pgPrGLCfMbbMPepxgGGzIeZtOHD7ybfjHENMAW763Jc3QXjE0ZfMiHK3TmYDvZ4sgL9HZ3-9o-lOun-7nxuvRU1bk0olE9MOhcLWzjemYaqizhgkLfgdQMnDRKdFxTZjijRipda2CdrR3pwfEFWv799dbazZj8AOmwOe7AfwDMOlNu</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Khan, S.</creator><creator>Mitsou, N.</creator><creator>Wollherr, D.</creator><creator>Tzafestas, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>An optimization approach for 3D environment mapping using normal vector uncertainty</title><author>Khan, S. ; Mitsou, N. ; Wollherr, D. ; Tzafestas, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c497da2abf54e9fd2c917e0341adba682af6c74b3812c321c67858a2be5f0daf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clustering algorithms</topic><topic>Cost function</topic><topic>Robot sensing systems</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, S.</creatorcontrib><creatorcontrib>Mitsou, N.</creatorcontrib><creatorcontrib>Wollherr, D.</creatorcontrib><creatorcontrib>Tzafestas, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, S.</au><au>Mitsou, N.</au><au>Wollherr, D.</au><au>Tzafestas, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An optimization approach for 3D environment mapping using normal vector uncertainty</atitle><btitle>2012 12th International Conference on Control Automation Robotics &amp; Vision (ICARCV)</btitle><stitle>ICARCV</stitle><date>2012-12</date><risdate>2012</risdate><spage>841</spage><epage>846</epage><pages>841-846</pages><isbn>9781467318716</isbn><isbn>146731871X</isbn><eisbn>1467318728</eisbn><eisbn>9781467318723</eisbn><eisbn>9781467318709</eisbn><eisbn>1467318701</eisbn><abstract>In this paper a novel approach for 3D environment mapping using registered robot poses is presented. The proposed algorithm focuses on improving the quality of robot generated 3D maps by incorporating the uncertainty of 3D points and propagating it into the normal vectors of surfaces. The uncertainty of normal vectors is an indicator of the quality of the detected surface. A controlled random search algorithm is applied to optimize a non-convex function of uncertain normal vectors and number of clusters in order to find the optimal threshold parameter for the segmentation process. This approach leads to an improved cluster coherence and thus better maps.</abstract><pub>IEEE</pub><doi>10.1109/ICARCV.2012.6485267</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467318716
ispartof 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), 2012, p.841-846
issn
language eng
recordid cdi_ieee_primary_6485267
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Cost function
Robot sensing systems
Uncertainty
Vectors
title An optimization approach for 3D environment mapping using normal vector uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20optimization%20approach%20for%203D%20environment%20mapping%20using%20normal%20vector%20uncertainty&rft.btitle=2012%2012th%20International%20Conference%20on%20Control%20Automation%20Robotics%20&%20Vision%20(ICARCV)&rft.au=Khan,%20S.&rft.date=2012-12&rft.spage=841&rft.epage=846&rft.pages=841-846&rft.isbn=9781467318716&rft.isbn_list=146731871X&rft_id=info:doi/10.1109/ICARCV.2012.6485267&rft_dat=%3Cieee_6IE%3E6485267%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467318728&rft.eisbn_list=9781467318723&rft.eisbn_list=9781467318709&rft.eisbn_list=1467318701&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6485267&rfr_iscdi=true