Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint

This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel with a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. We first study the rank of the optimal input covariance matrix that achieves the secrecy capacity of the MIMO Gau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2013-05, Vol.61 (10), p.2620-2631
Hauptverfasser: Fakoorian, S. Ali A., Swindlehurst, A. Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2631
container_issue 10
container_start_page 2620
container_title IEEE transactions on signal processing
container_volume 61
creator Fakoorian, S. Ali A.
Swindlehurst, A. Lee
description This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel with a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. We first study the rank of the optimal input covariance matrix that achieves the secrecy capacity of the MIMO Gaussian wiretap channel under an average power constraint. The rank and other properties of the optimal solution are derived based on certain relationships between the channel matrices for the legitimate receiver and eavesdropper. Next, by obtaining necessary and sufficient conditions on the MIMO wiretap channel parameters, we determine the conditions under which the optimal input covariance matrix is full-rank or rank-deficient. For the case that the optimal input covariance is full-rank, we fully characterize the solution. When the optimal input covariance is rank-deficient, we show that the given MIMO wiretap channel can be modeled by an equivalent wiretap channel whose optimal input covariance is full rank and achieves the same secrecy capacity as the original system. Numerical results are presented to illustrate the proposed theoretical findings.
doi_str_mv 10.1109/TSP.2013.2253774
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6484191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6484191</ieee_id><sourcerecordid>2959494791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-1c40c5aa04e7bb50b270f5cda490ea1061c01b058cb005e136d977e4c9f9d4a13</originalsourceid><addsrcrecordid>eNpdkM1rFEEQxQdRMEbvgpcGEbzMWjVdPT19DIuJgYQEE1G8DDW9Ne7ESc_aPaP439thlxw81dfvPYpXFK8RVojgPtzeXK8qQL2qKqOtpSfFETrCEsjWT3MPRpemsd-eFy9SugNAIlcfFd9Pl3FUnzn8VDfTuMzDFJLqp6jmrajL88srdcZLSgMH9XWIMvNOrbccgox5nrcq709-S-Qfoq6nPxLVOhvMkYcwvyye9TwmeXWox8WX04-360_lxdXZ-frkovTa0FyiJ_CGGUhs1xnoKgu98RsmB8IINXrADkzjOwAjqOuNs1bIu95tiFEfF-_3vrs4_Vokze39kLyMIweZltRmhUFTW6cz-vY_9G5aYsjfZYosUaMryhTsKR-nlKL07S4O9xz_tgjtQ9htDrt9CLs9hJ0l7w7GnDyPfeTgh_Soqxpyhuo6c2_23CAij-eaGkKH-h83qIY_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347448324</pqid></control><display><type>article</type><title>Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint</title><source>IEEE Electronic Library (IEL)</source><creator>Fakoorian, S. Ali A. ; Swindlehurst, A. Lee</creator><creatorcontrib>Fakoorian, S. Ali A. ; Swindlehurst, A. Lee</creatorcontrib><description>This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel with a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. We first study the rank of the optimal input covariance matrix that achieves the secrecy capacity of the MIMO Gaussian wiretap channel under an average power constraint. The rank and other properties of the optimal solution are derived based on certain relationships between the channel matrices for the legitimate receiver and eavesdropper. Next, by obtaining necessary and sufficient conditions on the MIMO wiretap channel parameters, we determine the conditions under which the optimal input covariance matrix is full-rank or rank-deficient. For the case that the optimal input covariance is full-rank, we fully characterize the solution. When the optimal input covariance is rank-deficient, we show that the given MIMO wiretap channel can be modeled by an equivalent wiretap channel whose optimal input covariance is full rank and achieves the same secrecy capacity as the original system. Numerical results are presented to illustrate the proposed theoretical findings.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2253774</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Channels ; Covariance ; Covariance matrices ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Equivalence ; Exact sciences and technology ; Gaussian ; Information, signal and communications theory ; Mathematical models ; MIMO ; MIMO Wiretap Channel ; Optimization ; Physical layer ; physical layer security ; Random variables ; Receivers ; secrecy capacity ; Security ; Signal and communications theory ; Signal, noise ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2013-05, Vol.61 (10), p.2620-2631</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-1c40c5aa04e7bb50b270f5cda490ea1061c01b058cb005e136d977e4c9f9d4a13</citedby><cites>FETCH-LOGICAL-c354t-1c40c5aa04e7bb50b270f5cda490ea1061c01b058cb005e136d977e4c9f9d4a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6484191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6484191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28495466$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fakoorian, S. Ali A.</creatorcontrib><creatorcontrib>Swindlehurst, A. Lee</creatorcontrib><title>Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel with a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. We first study the rank of the optimal input covariance matrix that achieves the secrecy capacity of the MIMO Gaussian wiretap channel under an average power constraint. The rank and other properties of the optimal solution are derived based on certain relationships between the channel matrices for the legitimate receiver and eavesdropper. Next, by obtaining necessary and sufficient conditions on the MIMO wiretap channel parameters, we determine the conditions under which the optimal input covariance matrix is full-rank or rank-deficient. For the case that the optimal input covariance is full-rank, we fully characterize the solution. When the optimal input covariance is rank-deficient, we show that the given MIMO wiretap channel can be modeled by an equivalent wiretap channel whose optimal input covariance is full rank and achieves the same secrecy capacity as the original system. Numerical results are presented to illustrate the proposed theoretical findings.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Channels</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Gaussian</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>MIMO</subject><subject>MIMO Wiretap Channel</subject><subject>Optimization</subject><subject>Physical layer</subject><subject>physical layer security</subject><subject>Random variables</subject><subject>Receivers</subject><subject>secrecy capacity</subject><subject>Security</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1rFEEQxQdRMEbvgpcGEbzMWjVdPT19DIuJgYQEE1G8DDW9Ne7ESc_aPaP439thlxw81dfvPYpXFK8RVojgPtzeXK8qQL2qKqOtpSfFETrCEsjWT3MPRpemsd-eFy9SugNAIlcfFd9Pl3FUnzn8VDfTuMzDFJLqp6jmrajL88srdcZLSgMH9XWIMvNOrbccgox5nrcq709-S-Qfoq6nPxLVOhvMkYcwvyye9TwmeXWox8WX04-360_lxdXZ-frkovTa0FyiJ_CGGUhs1xnoKgu98RsmB8IINXrADkzjOwAjqOuNs1bIu95tiFEfF-_3vrs4_Vokze39kLyMIweZltRmhUFTW6cz-vY_9G5aYsjfZYosUaMryhTsKR-nlKL07S4O9xz_tgjtQ9htDrt9CLs9hJ0l7w7GnDyPfeTgh_Soqxpyhuo6c2_23CAij-eaGkKH-h83qIY_</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Fakoorian, S. Ali A.</creator><creator>Swindlehurst, A. Lee</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130501</creationdate><title>Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint</title><author>Fakoorian, S. Ali A. ; Swindlehurst, A. Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-1c40c5aa04e7bb50b270f5cda490ea1061c01b058cb005e136d977e4c9f9d4a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Channels</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Gaussian</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>MIMO</topic><topic>MIMO Wiretap Channel</topic><topic>Optimization</topic><topic>Physical layer</topic><topic>physical layer security</topic><topic>Random variables</topic><topic>Receivers</topic><topic>secrecy capacity</topic><topic>Security</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fakoorian, S. Ali A.</creatorcontrib><creatorcontrib>Swindlehurst, A. Lee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fakoorian, S. Ali A.</au><au>Swindlehurst, A. Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>61</volume><issue>10</issue><spage>2620</spage><epage>2631</epage><pages>2620-2631</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel with a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. We first study the rank of the optimal input covariance matrix that achieves the secrecy capacity of the MIMO Gaussian wiretap channel under an average power constraint. The rank and other properties of the optimal solution are derived based on certain relationships between the channel matrices for the legitimate receiver and eavesdropper. Next, by obtaining necessary and sufficient conditions on the MIMO wiretap channel parameters, we determine the conditions under which the optimal input covariance matrix is full-rank or rank-deficient. For the case that the optimal input covariance is full-rank, we fully characterize the solution. When the optimal input covariance is rank-deficient, we show that the given MIMO wiretap channel can be modeled by an equivalent wiretap channel whose optimal input covariance is full rank and achieves the same secrecy capacity as the original system. Numerical results are presented to illustrate the proposed theoretical findings.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2253774</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2013-05, Vol.61 (10), p.2620-2631
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_6484191
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Channels
Covariance
Covariance matrices
Covariance matrix
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Equivalence
Exact sciences and technology
Gaussian
Information, signal and communications theory
Mathematical models
MIMO
MIMO Wiretap Channel
Optimization
Physical layer
physical layer security
Random variables
Receivers
secrecy capacity
Security
Signal and communications theory
Signal, noise
Studies
Telecommunications and information theory
title Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20Rank%20Solutions%20for%20the%20MIMO%20Gaussian%20Wiretap%20Channel%20With%20an%20Average%20Power%20Constraint&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Fakoorian,%20S.%20Ali%20A.&rft.date=2013-05-01&rft.volume=61&rft.issue=10&rft.spage=2620&rft.epage=2631&rft.pages=2620-2631&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2253774&rft_dat=%3Cproquest_RIE%3E2959494791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1347448324&rft_id=info:pmid/&rft_ieee_id=6484191&rfr_iscdi=true