Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint
This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel with a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. We first study the rank of the optimal input covariance matrix that achieves the secrecy capacity of the MIMO Gau...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2013-05, Vol.61 (10), p.2620-2631 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2631 |
---|---|
container_issue | 10 |
container_start_page | 2620 |
container_title | IEEE transactions on signal processing |
container_volume | 61 |
creator | Fakoorian, S. Ali A. Swindlehurst, A. Lee |
description | This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel with a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. We first study the rank of the optimal input covariance matrix that achieves the secrecy capacity of the MIMO Gaussian wiretap channel under an average power constraint. The rank and other properties of the optimal solution are derived based on certain relationships between the channel matrices for the legitimate receiver and eavesdropper. Next, by obtaining necessary and sufficient conditions on the MIMO wiretap channel parameters, we determine the conditions under which the optimal input covariance matrix is full-rank or rank-deficient. For the case that the optimal input covariance is full-rank, we fully characterize the solution. When the optimal input covariance is rank-deficient, we show that the given MIMO wiretap channel can be modeled by an equivalent wiretap channel whose optimal input covariance is full rank and achieves the same secrecy capacity as the original system. Numerical results are presented to illustrate the proposed theoretical findings. |
doi_str_mv | 10.1109/TSP.2013.2253774 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6484191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6484191</ieee_id><sourcerecordid>2959494791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-1c40c5aa04e7bb50b270f5cda490ea1061c01b058cb005e136d977e4c9f9d4a13</originalsourceid><addsrcrecordid>eNpdkM1rFEEQxQdRMEbvgpcGEbzMWjVdPT19DIuJgYQEE1G8DDW9Ne7ESc_aPaP439thlxw81dfvPYpXFK8RVojgPtzeXK8qQL2qKqOtpSfFETrCEsjWT3MPRpemsd-eFy9SugNAIlcfFd9Pl3FUnzn8VDfTuMzDFJLqp6jmrajL88srdcZLSgMH9XWIMvNOrbccgox5nrcq709-S-Qfoq6nPxLVOhvMkYcwvyye9TwmeXWox8WX04-360_lxdXZ-frkovTa0FyiJ_CGGUhs1xnoKgu98RsmB8IINXrADkzjOwAjqOuNs1bIu95tiFEfF-_3vrs4_Vokze39kLyMIweZltRmhUFTW6cz-vY_9G5aYsjfZYosUaMryhTsKR-nlKL07S4O9xz_tgjtQ9htDrt9CLs9hJ0l7w7GnDyPfeTgh_Soqxpyhuo6c2_23CAij-eaGkKH-h83qIY_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347448324</pqid></control><display><type>article</type><title>Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint</title><source>IEEE Electronic Library (IEL)</source><creator>Fakoorian, S. Ali A. ; Swindlehurst, A. Lee</creator><creatorcontrib>Fakoorian, S. Ali A. ; Swindlehurst, A. Lee</creatorcontrib><description>This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel with a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. We first study the rank of the optimal input covariance matrix that achieves the secrecy capacity of the MIMO Gaussian wiretap channel under an average power constraint. The rank and other properties of the optimal solution are derived based on certain relationships between the channel matrices for the legitimate receiver and eavesdropper. Next, by obtaining necessary and sufficient conditions on the MIMO wiretap channel parameters, we determine the conditions under which the optimal input covariance matrix is full-rank or rank-deficient. For the case that the optimal input covariance is full-rank, we fully characterize the solution. When the optimal input covariance is rank-deficient, we show that the given MIMO wiretap channel can be modeled by an equivalent wiretap channel whose optimal input covariance is full rank and achieves the same secrecy capacity as the original system. Numerical results are presented to illustrate the proposed theoretical findings.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2253774</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Channels ; Covariance ; Covariance matrices ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Equivalence ; Exact sciences and technology ; Gaussian ; Information, signal and communications theory ; Mathematical models ; MIMO ; MIMO Wiretap Channel ; Optimization ; Physical layer ; physical layer security ; Random variables ; Receivers ; secrecy capacity ; Security ; Signal and communications theory ; Signal, noise ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2013-05, Vol.61 (10), p.2620-2631</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-1c40c5aa04e7bb50b270f5cda490ea1061c01b058cb005e136d977e4c9f9d4a13</citedby><cites>FETCH-LOGICAL-c354t-1c40c5aa04e7bb50b270f5cda490ea1061c01b058cb005e136d977e4c9f9d4a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6484191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6484191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28495466$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fakoorian, S. Ali A.</creatorcontrib><creatorcontrib>Swindlehurst, A. Lee</creatorcontrib><title>Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel with a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. We first study the rank of the optimal input covariance matrix that achieves the secrecy capacity of the MIMO Gaussian wiretap channel under an average power constraint. The rank and other properties of the optimal solution are derived based on certain relationships between the channel matrices for the legitimate receiver and eavesdropper. Next, by obtaining necessary and sufficient conditions on the MIMO wiretap channel parameters, we determine the conditions under which the optimal input covariance matrix is full-rank or rank-deficient. For the case that the optimal input covariance is full-rank, we fully characterize the solution. When the optimal input covariance is rank-deficient, we show that the given MIMO wiretap channel can be modeled by an equivalent wiretap channel whose optimal input covariance is full rank and achieves the same secrecy capacity as the original system. Numerical results are presented to illustrate the proposed theoretical findings.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Channels</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Gaussian</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>MIMO</subject><subject>MIMO Wiretap Channel</subject><subject>Optimization</subject><subject>Physical layer</subject><subject>physical layer security</subject><subject>Random variables</subject><subject>Receivers</subject><subject>secrecy capacity</subject><subject>Security</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1rFEEQxQdRMEbvgpcGEbzMWjVdPT19DIuJgYQEE1G8DDW9Ne7ESc_aPaP439thlxw81dfvPYpXFK8RVojgPtzeXK8qQL2qKqOtpSfFETrCEsjWT3MPRpemsd-eFy9SugNAIlcfFd9Pl3FUnzn8VDfTuMzDFJLqp6jmrajL88srdcZLSgMH9XWIMvNOrbccgox5nrcq709-S-Qfoq6nPxLVOhvMkYcwvyye9TwmeXWox8WX04-360_lxdXZ-frkovTa0FyiJ_CGGUhs1xnoKgu98RsmB8IINXrADkzjOwAjqOuNs1bIu95tiFEfF-_3vrs4_Vokze39kLyMIweZltRmhUFTW6cz-vY_9G5aYsjfZYosUaMryhTsKR-nlKL07S4O9xz_tgjtQ9htDrt9CLs9hJ0l7w7GnDyPfeTgh_Soqxpyhuo6c2_23CAij-eaGkKH-h83qIY_</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Fakoorian, S. Ali A.</creator><creator>Swindlehurst, A. Lee</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130501</creationdate><title>Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint</title><author>Fakoorian, S. Ali A. ; Swindlehurst, A. Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-1c40c5aa04e7bb50b270f5cda490ea1061c01b058cb005e136d977e4c9f9d4a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Channels</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Gaussian</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>MIMO</topic><topic>MIMO Wiretap Channel</topic><topic>Optimization</topic><topic>Physical layer</topic><topic>physical layer security</topic><topic>Random variables</topic><topic>Receivers</topic><topic>secrecy capacity</topic><topic>Security</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fakoorian, S. Ali A.</creatorcontrib><creatorcontrib>Swindlehurst, A. Lee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fakoorian, S. Ali A.</au><au>Swindlehurst, A. Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>61</volume><issue>10</issue><spage>2620</spage><epage>2631</epage><pages>2620-2631</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper considers a multiple-input multiple-output (MIMO) Gaussian wiretap channel with a transmitter, a legitimate receiver and an eavesdropper, each equipped with multiple antennas. We first study the rank of the optimal input covariance matrix that achieves the secrecy capacity of the MIMO Gaussian wiretap channel under an average power constraint. The rank and other properties of the optimal solution are derived based on certain relationships between the channel matrices for the legitimate receiver and eavesdropper. Next, by obtaining necessary and sufficient conditions on the MIMO wiretap channel parameters, we determine the conditions under which the optimal input covariance matrix is full-rank or rank-deficient. For the case that the optimal input covariance is full-rank, we fully characterize the solution. When the optimal input covariance is rank-deficient, we show that the given MIMO wiretap channel can be modeled by an equivalent wiretap channel whose optimal input covariance is full rank and achieves the same secrecy capacity as the original system. Numerical results are presented to illustrate the proposed theoretical findings.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2253774</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2013-05, Vol.61 (10), p.2620-2631 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_6484191 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Channels Covariance Covariance matrices Covariance matrix Detection, estimation, filtering, equalization, prediction Eigenvalues and eigenfunctions Equivalence Exact sciences and technology Gaussian Information, signal and communications theory Mathematical models MIMO MIMO Wiretap Channel Optimization Physical layer physical layer security Random variables Receivers secrecy capacity Security Signal and communications theory Signal, noise Studies Telecommunications and information theory |
title | Full Rank Solutions for the MIMO Gaussian Wiretap Channel With an Average Power Constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20Rank%20Solutions%20for%20the%20MIMO%20Gaussian%20Wiretap%20Channel%20With%20an%20Average%20Power%20Constraint&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Fakoorian,%20S.%20Ali%20A.&rft.date=2013-05-01&rft.volume=61&rft.issue=10&rft.spage=2620&rft.epage=2631&rft.pages=2620-2631&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2253774&rft_dat=%3Cproquest_RIE%3E2959494791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1347448324&rft_id=info:pmid/&rft_ieee_id=6484191&rfr_iscdi=true |