Delay asymptotics for heavy-tailed MapReduce jobs

A MapReduce job consists of two phases that are processed in a map queue and a redeuce queue, respectively. The map queue is characterized by the processor sharing discpline, and the reduce queue by a multi-server station. A reduce task is composed of two sequential steps: the copy/shuffle step and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jian Tan, Shicong Meng, Xiaoqiao Meng, Li Zhang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1639
container_issue
container_start_page 1637
container_title
container_volume
creator Jian Tan
Shicong Meng
Xiaoqiao Meng
Li Zhang
description A MapReduce job consists of two phases that are processed in a map queue and a redeuce queue, respectively. The map queue is characterized by the processor sharing discpline, and the reduce queue by a multi-server station. A reduce task is composed of two sequential steps: the copy/shuffle step and the reduce function step. A synchronization barrier between the map and reduce phases complicates the process: the copy/shuffle step can overlap with the map phase, but its finish point and the start of the reduce function step have to be strictly after the completion of the map phase of the same job. This dependency can result in an interesting criticality phenomenon for the job delay distribution in MapReduce scheduling. We refine the logarithmic asymptotics that has been established for heavy-tailed MapReduce jobs by studying the exact asymptotics. The analysis reveals that the MapReduce framework combines the features of both processor sharing and first in first out disciplines.
doi_str_mv 10.1109/Allerton.2012.6483417
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6483417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6483417</ieee_id><sourcerecordid>6483417</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-dd1b2a45da1d3719467574e097c02a77469823b6b1565aeb0fb61b5450be9e753</originalsourceid><addsrcrecordid>eNpVj81Kw0AURkdEUGqeQIS8QOLc-buZZak_FSpCqetyJ3ODKakJmSjk7S3YjavDtzl8R4h7kCWA9A_LruNx6r9KJUGVzlTaAF6IzGMFxqE2Vnt1-W9jdS2ylA5SypPCgaluBDxyR3NOaT4OUz-1dcqbfsw_mX7mYqK245i_0bDl-F1zfuhDuhVXDXWJszMX4uP5abdaF5v3l9fVclO0gHYqYoSgyNhIEDWCP32waFh6rKUiRON8pXRwAayzxEE2wUGwxsrAntHqhbj787bMvB_G9kjjvD-H6l9hGkbu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Delay asymptotics for heavy-tailed MapReduce jobs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jian Tan ; Shicong Meng ; Xiaoqiao Meng ; Li Zhang</creator><creatorcontrib>Jian Tan ; Shicong Meng ; Xiaoqiao Meng ; Li Zhang</creatorcontrib><description>A MapReduce job consists of two phases that are processed in a map queue and a redeuce queue, respectively. The map queue is characterized by the processor sharing discpline, and the reduce queue by a multi-server station. A reduce task is composed of two sequential steps: the copy/shuffle step and the reduce function step. A synchronization barrier between the map and reduce phases complicates the process: the copy/shuffle step can overlap with the map phase, but its finish point and the start of the reduce function step have to be strictly after the completion of the map phase of the same job. This dependency can result in an interesting criticality phenomenon for the job delay distribution in MapReduce scheduling. We refine the logarithmic asymptotics that has been established for heavy-tailed MapReduce jobs by studying the exact asymptotics. The analysis reveals that the MapReduce framework combines the features of both processor sharing and first in first out disciplines.</description><identifier>ISBN: 9781467345378</identifier><identifier>ISBN: 1467345377</identifier><identifier>EISBN: 9781467345392</identifier><identifier>EISBN: 1467345385</identifier><identifier>EISBN: 9781467345385</identifier><identifier>EISBN: 1467345393</identifier><identifier>DOI: 10.1109/Allerton.2012.6483417</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bismuth ; Cloud computing ; Delays ; Processor scheduling ; Random variables ; Servers ; Synchronization</subject><ispartof>2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2012, p.1637-1639</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6483417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6483417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian Tan</creatorcontrib><creatorcontrib>Shicong Meng</creatorcontrib><creatorcontrib>Xiaoqiao Meng</creatorcontrib><creatorcontrib>Li Zhang</creatorcontrib><title>Delay asymptotics for heavy-tailed MapReduce jobs</title><title>2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton)</title><addtitle>Allerton</addtitle><description>A MapReduce job consists of two phases that are processed in a map queue and a redeuce queue, respectively. The map queue is characterized by the processor sharing discpline, and the reduce queue by a multi-server station. A reduce task is composed of two sequential steps: the copy/shuffle step and the reduce function step. A synchronization barrier between the map and reduce phases complicates the process: the copy/shuffle step can overlap with the map phase, but its finish point and the start of the reduce function step have to be strictly after the completion of the map phase of the same job. This dependency can result in an interesting criticality phenomenon for the job delay distribution in MapReduce scheduling. We refine the logarithmic asymptotics that has been established for heavy-tailed MapReduce jobs by studying the exact asymptotics. The analysis reveals that the MapReduce framework combines the features of both processor sharing and first in first out disciplines.</description><subject>Bismuth</subject><subject>Cloud computing</subject><subject>Delays</subject><subject>Processor scheduling</subject><subject>Random variables</subject><subject>Servers</subject><subject>Synchronization</subject><isbn>9781467345378</isbn><isbn>1467345377</isbn><isbn>9781467345392</isbn><isbn>1467345385</isbn><isbn>9781467345385</isbn><isbn>1467345393</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81Kw0AURkdEUGqeQIS8QOLc-buZZak_FSpCqetyJ3ODKakJmSjk7S3YjavDtzl8R4h7kCWA9A_LruNx6r9KJUGVzlTaAF6IzGMFxqE2Vnt1-W9jdS2ylA5SypPCgaluBDxyR3NOaT4OUz-1dcqbfsw_mX7mYqK245i_0bDl-F1zfuhDuhVXDXWJszMX4uP5abdaF5v3l9fVclO0gHYqYoSgyNhIEDWCP32waFh6rKUiRON8pXRwAayzxEE2wUGwxsrAntHqhbj787bMvB_G9kjjvD-H6l9hGkbu</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Jian Tan</creator><creator>Shicong Meng</creator><creator>Xiaoqiao Meng</creator><creator>Li Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Delay asymptotics for heavy-tailed MapReduce jobs</title><author>Jian Tan ; Shicong Meng ; Xiaoqiao Meng ; Li Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-dd1b2a45da1d3719467574e097c02a77469823b6b1565aeb0fb61b5450be9e753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bismuth</topic><topic>Cloud computing</topic><topic>Delays</topic><topic>Processor scheduling</topic><topic>Random variables</topic><topic>Servers</topic><topic>Synchronization</topic><toplevel>online_resources</toplevel><creatorcontrib>Jian Tan</creatorcontrib><creatorcontrib>Shicong Meng</creatorcontrib><creatorcontrib>Xiaoqiao Meng</creatorcontrib><creatorcontrib>Li Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian Tan</au><au>Shicong Meng</au><au>Xiaoqiao Meng</au><au>Li Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Delay asymptotics for heavy-tailed MapReduce jobs</atitle><btitle>2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton)</btitle><stitle>Allerton</stitle><date>2012-10</date><risdate>2012</risdate><spage>1637</spage><epage>1639</epage><pages>1637-1639</pages><isbn>9781467345378</isbn><isbn>1467345377</isbn><eisbn>9781467345392</eisbn><eisbn>1467345385</eisbn><eisbn>9781467345385</eisbn><eisbn>1467345393</eisbn><abstract>A MapReduce job consists of two phases that are processed in a map queue and a redeuce queue, respectively. The map queue is characterized by the processor sharing discpline, and the reduce queue by a multi-server station. A reduce task is composed of two sequential steps: the copy/shuffle step and the reduce function step. A synchronization barrier between the map and reduce phases complicates the process: the copy/shuffle step can overlap with the map phase, but its finish point and the start of the reduce function step have to be strictly after the completion of the map phase of the same job. This dependency can result in an interesting criticality phenomenon for the job delay distribution in MapReduce scheduling. We refine the logarithmic asymptotics that has been established for heavy-tailed MapReduce jobs by studying the exact asymptotics. The analysis reveals that the MapReduce framework combines the features of both processor sharing and first in first out disciplines.</abstract><pub>IEEE</pub><doi>10.1109/Allerton.2012.6483417</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467345378
ispartof 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2012, p.1637-1639
issn
language eng
recordid cdi_ieee_primary_6483417
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bismuth
Cloud computing
Delays
Processor scheduling
Random variables
Servers
Synchronization
title Delay asymptotics for heavy-tailed MapReduce jobs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Delay%20asymptotics%20for%20heavy-tailed%20MapReduce%20jobs&rft.btitle=2012%2050th%20Annual%20Allerton%20Conference%20on%20Communication,%20Control,%20and%20Computing%20(Allerton)&rft.au=Jian%20Tan&rft.date=2012-10&rft.spage=1637&rft.epage=1639&rft.pages=1637-1639&rft.isbn=9781467345378&rft.isbn_list=1467345377&rft_id=info:doi/10.1109/Allerton.2012.6483417&rft_dat=%3Cieee_6IE%3E6483417%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467345392&rft.eisbn_list=1467345385&rft.eisbn_list=9781467345385&rft.eisbn_list=1467345393&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6483417&rfr_iscdi=true