On the capacity of the one-bit deletion and duplication channel

The one-bit deletion and duplication channel is investigated. An input to this channel consists of a block of l ≥ 1 bits which experiences a deletion with probability p, a duplication with probability q, and remains unchanged with probability 1 - p - q. For this channel a capacity expression is obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mirghasemi, H., Tchamkerten, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue
container_start_page 152
container_title
container_volume
creator Mirghasemi, H.
Tchamkerten, A.
description The one-bit deletion and duplication channel is investigated. An input to this channel consists of a block of l ≥ 1 bits which experiences a deletion with probability p, a duplication with probability q, and remains unchanged with probability 1 - p - q. For this channel a capacity expression is obtained in the asymptotic regime where p + q = o(l/logl). As a corollary, we obtain an asymptotic expression for the capacity of the so called "segmented" deletion and duplication channel where the input now consists of several blocks and each block independently experiences either a deletion, or a duplication, or remains unchanged.
doi_str_mv 10.1109/Allerton.2012.6483212
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6483212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6483212</ieee_id><sourcerecordid>6483212</sourcerecordid><originalsourceid>FETCH-LOGICAL-i222t-5e46cfbaab0c2b7d89dcff04d94ac0611b95e446052a5854894c7ecb2181d4f3</originalsourceid><addsrcrecordid>eNpVj81KAzEUhSMiKHWeQIS8wIz5m5lkJaWoFQrddF9ukhsaiZlhJi769g61G1eHDw4f5xDyzFnDOTMv65RwKkNuBOOi6ZSWgosbUplec9X1UrXSiNt_3Ot7Us3zF2NsUXRc6Qfyus-0nJA6GMHFcqZDuPCQsbaxUI8JSxwyheyp_xlTdHBhd4KcMT2SuwBpxuqaK3J4fztstvVu__G5We_qKIQodYuqc8ECWOaE7b023oXAlDcK3DKFW7NUVMdaAa1ulTbK9eis4Jp7FeSKPP1pIyIexyl-w3Q-Xl_LX87kTFc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the capacity of the one-bit deletion and duplication channel</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mirghasemi, H. ; Tchamkerten, A.</creator><creatorcontrib>Mirghasemi, H. ; Tchamkerten, A.</creatorcontrib><description>The one-bit deletion and duplication channel is investigated. An input to this channel consists of a block of l ≥ 1 bits which experiences a deletion with probability p, a duplication with probability q, and remains unchanged with probability 1 - p - q. For this channel a capacity expression is obtained in the asymptotic regime where p + q = o(l/logl). As a corollary, we obtain an asymptotic expression for the capacity of the so called "segmented" deletion and duplication channel where the input now consists of several blocks and each block independently experiences either a deletion, or a duplication, or remains unchanged.</description><identifier>ISBN: 9781467345378</identifier><identifier>ISBN: 1467345377</identifier><identifier>EISBN: 9781467345392</identifier><identifier>EISBN: 1467345385</identifier><identifier>EISBN: 9781467345385</identifier><identifier>EISBN: 1467345393</identifier><identifier>DOI: 10.1109/Allerton.2012.6483212</identifier><language>eng</language><publisher>IEEE</publisher><subject>Channel capacity ; Decoding ; Large scale integration ; Receivers ; Silicon ; Upper bound</subject><ispartof>2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2012, p.152-159</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6483212$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6483212$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mirghasemi, H.</creatorcontrib><creatorcontrib>Tchamkerten, A.</creatorcontrib><title>On the capacity of the one-bit deletion and duplication channel</title><title>2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton)</title><addtitle>Allerton</addtitle><description>The one-bit deletion and duplication channel is investigated. An input to this channel consists of a block of l ≥ 1 bits which experiences a deletion with probability p, a duplication with probability q, and remains unchanged with probability 1 - p - q. For this channel a capacity expression is obtained in the asymptotic regime where p + q = o(l/logl). As a corollary, we obtain an asymptotic expression for the capacity of the so called "segmented" deletion and duplication channel where the input now consists of several blocks and each block independently experiences either a deletion, or a duplication, or remains unchanged.</description><subject>Channel capacity</subject><subject>Decoding</subject><subject>Large scale integration</subject><subject>Receivers</subject><subject>Silicon</subject><subject>Upper bound</subject><isbn>9781467345378</isbn><isbn>1467345377</isbn><isbn>9781467345392</isbn><isbn>1467345385</isbn><isbn>9781467345385</isbn><isbn>1467345393</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81KAzEUhSMiKHWeQIS8wIz5m5lkJaWoFQrddF9ukhsaiZlhJi769g61G1eHDw4f5xDyzFnDOTMv65RwKkNuBOOi6ZSWgosbUplec9X1UrXSiNt_3Ot7Us3zF2NsUXRc6Qfyus-0nJA6GMHFcqZDuPCQsbaxUI8JSxwyheyp_xlTdHBhd4KcMT2SuwBpxuqaK3J4fztstvVu__G5We_qKIQodYuqc8ECWOaE7b023oXAlDcK3DKFW7NUVMdaAa1ulTbK9eis4Jp7FeSKPP1pIyIexyl-w3Q-Xl_LX87kTFc</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Mirghasemi, H.</creator><creator>Tchamkerten, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>On the capacity of the one-bit deletion and duplication channel</title><author>Mirghasemi, H. ; Tchamkerten, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i222t-5e46cfbaab0c2b7d89dcff04d94ac0611b95e446052a5854894c7ecb2181d4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Channel capacity</topic><topic>Decoding</topic><topic>Large scale integration</topic><topic>Receivers</topic><topic>Silicon</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Mirghasemi, H.</creatorcontrib><creatorcontrib>Tchamkerten, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mirghasemi, H.</au><au>Tchamkerten, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the capacity of the one-bit deletion and duplication channel</atitle><btitle>2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton)</btitle><stitle>Allerton</stitle><date>2012-10</date><risdate>2012</risdate><spage>152</spage><epage>159</epage><pages>152-159</pages><isbn>9781467345378</isbn><isbn>1467345377</isbn><eisbn>9781467345392</eisbn><eisbn>1467345385</eisbn><eisbn>9781467345385</eisbn><eisbn>1467345393</eisbn><abstract>The one-bit deletion and duplication channel is investigated. An input to this channel consists of a block of l ≥ 1 bits which experiences a deletion with probability p, a duplication with probability q, and remains unchanged with probability 1 - p - q. For this channel a capacity expression is obtained in the asymptotic regime where p + q = o(l/logl). As a corollary, we obtain an asymptotic expression for the capacity of the so called "segmented" deletion and duplication channel where the input now consists of several blocks and each block independently experiences either a deletion, or a duplication, or remains unchanged.</abstract><pub>IEEE</pub><doi>10.1109/Allerton.2012.6483212</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467345378
ispartof 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2012, p.152-159
issn
language eng
recordid cdi_ieee_primary_6483212
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Channel capacity
Decoding
Large scale integration
Receivers
Silicon
Upper bound
title On the capacity of the one-bit deletion and duplication channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T22%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20capacity%20of%20the%20one-bit%20deletion%20and%20duplication%20channel&rft.btitle=2012%2050th%20Annual%20Allerton%20Conference%20on%20Communication,%20Control,%20and%20Computing%20(Allerton)&rft.au=Mirghasemi,%20H.&rft.date=2012-10&rft.spage=152&rft.epage=159&rft.pages=152-159&rft.isbn=9781467345378&rft.isbn_list=1467345377&rft_id=info:doi/10.1109/Allerton.2012.6483212&rft_dat=%3Cieee_6IE%3E6483212%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467345392&rft.eisbn_list=1467345385&rft.eisbn_list=9781467345385&rft.eisbn_list=1467345393&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6483212&rfr_iscdi=true