Face recognition: A Sparse Representation-based Classification using Independent Component Analysis

In this paper, we will describe a new method based on Sparse Representation-based Classification (SRC) for face recognition. We have used histogram equalization as a preprocessing method in order to overcome the illumination variation problem. Using Independent Component Analysis we have obtained a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karimi, M. M., Soltanian-Zadeh, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1174
container_issue
container_start_page 1170
container_title
container_volume
creator Karimi, M. M.
Soltanian-Zadeh, H.
description In this paper, we will describe a new method based on Sparse Representation-based Classification (SRC) for face recognition. We have used histogram equalization as a preprocessing method in order to overcome the illumination variation problem. Using Independent Component Analysis we have obtained a feature vector for each face image which is robust to illumination variations and occlusion. Although SRC is robust against occlusion, it is rather slow. By using features with smaller dimensions but enough information, we can obtain better recognition rates in shorter periods. This method was tested on Extended Yale B database and obtained the recognition rates of 98.51% and 95.77% in presence of 10% and 20% occlusion, respectively.
doi_str_mv 10.1109/ISTEL.2012.6483165
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6483165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6483165</ieee_id><sourcerecordid>6483165</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2548685d3e57a0c1fec8cff4801be52460b8663e7164af9228b2b4a0a3ff16d73</originalsourceid><addsrcrecordid>eNo1UEtOwzAUNEJIQMkFYOMLJPhvh10VtRApEhIt68pxniuj1InisOjtaaFs5vf0ZjEIPVJSUErK53qzXTUFI5QVShhOlbxCWakNFUpzRjTn1-j-3zB2i7KUvgghp2dNFL1Dbm0d4AncsI9hDkN8wUu8Ge2UAH_AOEGCONvzIW9tgg5XvU0p-OB-Q_ydQtzjOnYwwgnijKvhMA7xrJbR9scU0gO68bZPkF14gT7Xq231ljfvr3W1bPJAtZxzJoVRRnYcpLbEUQ_OOO-FIbQFyYQirVGKg6ZKWF8yZlrWCkss956qTvMFevrrDQCwG6dwsNNxd9mF_wAabVfT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Face recognition: A Sparse Representation-based Classification using Independent Component Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karimi, M. M. ; Soltanian-Zadeh, H.</creator><creatorcontrib>Karimi, M. M. ; Soltanian-Zadeh, H.</creatorcontrib><description>In this paper, we will describe a new method based on Sparse Representation-based Classification (SRC) for face recognition. We have used histogram equalization as a preprocessing method in order to overcome the illumination variation problem. Using Independent Component Analysis we have obtained a feature vector for each face image which is robust to illumination variations and occlusion. Although SRC is robust against occlusion, it is rather slow. By using features with smaller dimensions but enough information, we can obtain better recognition rates in shorter periods. This method was tested on Extended Yale B database and obtained the recognition rates of 98.51% and 95.77% in presence of 10% and 20% occlusion, respectively.</description><identifier>ISBN: 1467320722</identifier><identifier>ISBN: 9781467320726</identifier><identifier>EISBN: 9781467320733</identifier><identifier>EISBN: 9781467320719</identifier><identifier>EISBN: 1467320714</identifier><identifier>EISBN: 1467320730</identifier><identifier>DOI: 10.1109/ISTEL.2012.6483165</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Face recognition ; Feature extraction ; ICA ; Lighting ; Principal component analysis ; Robustness ; Sparse Representation based Classification ; Training</subject><ispartof>6th International Symposium on Telecommunications (IST), 2012, p.1170-1174</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6483165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6483165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karimi, M. M.</creatorcontrib><creatorcontrib>Soltanian-Zadeh, H.</creatorcontrib><title>Face recognition: A Sparse Representation-based Classification using Independent Component Analysis</title><title>6th International Symposium on Telecommunications (IST)</title><addtitle>ISTEL</addtitle><description>In this paper, we will describe a new method based on Sparse Representation-based Classification (SRC) for face recognition. We have used histogram equalization as a preprocessing method in order to overcome the illumination variation problem. Using Independent Component Analysis we have obtained a feature vector for each face image which is robust to illumination variations and occlusion. Although SRC is robust against occlusion, it is rather slow. By using features with smaller dimensions but enough information, we can obtain better recognition rates in shorter periods. This method was tested on Extended Yale B database and obtained the recognition rates of 98.51% and 95.77% in presence of 10% and 20% occlusion, respectively.</description><subject>Equations</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>ICA</subject><subject>Lighting</subject><subject>Principal component analysis</subject><subject>Robustness</subject><subject>Sparse Representation based Classification</subject><subject>Training</subject><isbn>1467320722</isbn><isbn>9781467320726</isbn><isbn>9781467320733</isbn><isbn>9781467320719</isbn><isbn>1467320714</isbn><isbn>1467320730</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtOwzAUNEJIQMkFYOMLJPhvh10VtRApEhIt68pxniuj1InisOjtaaFs5vf0ZjEIPVJSUErK53qzXTUFI5QVShhOlbxCWakNFUpzRjTn1-j-3zB2i7KUvgghp2dNFL1Dbm0d4AncsI9hDkN8wUu8Ge2UAH_AOEGCONvzIW9tgg5XvU0p-OB-Q_ydQtzjOnYwwgnijKvhMA7xrJbR9scU0gO68bZPkF14gT7Xq231ljfvr3W1bPJAtZxzJoVRRnYcpLbEUQ_OOO-FIbQFyYQirVGKg6ZKWF8yZlrWCkss956qTvMFevrrDQCwG6dwsNNxd9mF_wAabVfT</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Karimi, M. M.</creator><creator>Soltanian-Zadeh, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Face recognition: A Sparse Representation-based Classification using Independent Component Analysis</title><author>Karimi, M. M. ; Soltanian-Zadeh, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2548685d3e57a0c1fec8cff4801be52460b8663e7164af9228b2b4a0a3ff16d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Equations</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>ICA</topic><topic>Lighting</topic><topic>Principal component analysis</topic><topic>Robustness</topic><topic>Sparse Representation based Classification</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Karimi, M. M.</creatorcontrib><creatorcontrib>Soltanian-Zadeh, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karimi, M. M.</au><au>Soltanian-Zadeh, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Face recognition: A Sparse Representation-based Classification using Independent Component Analysis</atitle><btitle>6th International Symposium on Telecommunications (IST)</btitle><stitle>ISTEL</stitle><date>2012-11</date><risdate>2012</risdate><spage>1170</spage><epage>1174</epage><pages>1170-1174</pages><isbn>1467320722</isbn><isbn>9781467320726</isbn><eisbn>9781467320733</eisbn><eisbn>9781467320719</eisbn><eisbn>1467320714</eisbn><eisbn>1467320730</eisbn><abstract>In this paper, we will describe a new method based on Sparse Representation-based Classification (SRC) for face recognition. We have used histogram equalization as a preprocessing method in order to overcome the illumination variation problem. Using Independent Component Analysis we have obtained a feature vector for each face image which is robust to illumination variations and occlusion. Although SRC is robust against occlusion, it is rather slow. By using features with smaller dimensions but enough information, we can obtain better recognition rates in shorter periods. This method was tested on Extended Yale B database and obtained the recognition rates of 98.51% and 95.77% in presence of 10% and 20% occlusion, respectively.</abstract><pub>IEEE</pub><doi>10.1109/ISTEL.2012.6483165</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467320722
ispartof 6th International Symposium on Telecommunications (IST), 2012, p.1170-1174
issn
language eng
recordid cdi_ieee_primary_6483165
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Face recognition
Feature extraction
ICA
Lighting
Principal component analysis
Robustness
Sparse Representation based Classification
Training
title Face recognition: A Sparse Representation-based Classification using Independent Component Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Face%20recognition:%20A%20Sparse%20Representation-based%20Classification%20using%20Independent%20Component%20Analysis&rft.btitle=6th%20International%20Symposium%20on%20Telecommunications%20(IST)&rft.au=Karimi,%20M.%20M.&rft.date=2012-11&rft.spage=1170&rft.epage=1174&rft.pages=1170-1174&rft.isbn=1467320722&rft.isbn_list=9781467320726&rft_id=info:doi/10.1109/ISTEL.2012.6483165&rft_dat=%3Cieee_6IE%3E6483165%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467320733&rft.eisbn_list=9781467320719&rft.eisbn_list=1467320714&rft.eisbn_list=1467320730&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6483165&rfr_iscdi=true