Progressive sparse image sensing using Iterative Methods

Progressive image transmission enables the receivers to reconstruct a transmitted image at various bit rates. Most of the works in this field are based on the conventional Shannon-Nyquist sampling theory. In the present work, progressive image transmission is investigated using sparse recovery of ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Azghani, M., Marvasti, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 901
container_issue
container_start_page 897
container_title
container_volume
creator Azghani, M.
Marvasti, F.
description Progressive image transmission enables the receivers to reconstruct a transmitted image at various bit rates. Most of the works in this field are based on the conventional Shannon-Nyquist sampling theory. In the present work, progressive image transmission is investigated using sparse recovery of random samples. The sparse recovery methods such as Iterative Method with Adaptive Thresholding (IMAT) and Iterative IKMAX Thresholding (IKMAX) are exploited in this framework since they have the ability for successive reconstruction. The simulation results indicate that the proposed method performs well in progressive recovery. The IKMAX has better final reconstruction than IMAT at the cost of requiring sparse signal with extra information about the sparsity number. However, the IMAT has the ability to recover the compressible signals. Furthermore, two sampling strategies, random sampling and uniform sampling are exploited. The simulations show that IMAT is a better choice for random sampling and IKMAX behaves better than IMAT in the case of uniform sampling.
doi_str_mv 10.1109/ISTEL.2012.6483113
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6483113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6483113</ieee_id><sourcerecordid>6483113</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-daa004cd48416f98f663269c0cb96639a3ed3a61c58a00ae1494c977aeca000a3</originalsourceid><addsrcrecordid>eNo1j91Kw0AQhVdEUGteQG_yAokzu9v9uZRSNRBRsF6XcTOJEW3LbhR8e1etN2fOB2eGOUKcI9SI4C-bx9WyrSWgrI12ClEdiMJbh9pYJcEqdShO_0HKY1Gk9AoAedmCwRPhHuJ2iJzS-Mll2lFMXI7vNGTgTRo3Q_nxq83Ekaaf0B1PL9sunYmjnt4SF_s5E0_Xy9Xitmrvb5rFVVuNaOdT1REB6NBpp9H03vXGKGl8gPDss_WkuFNkMMxdDhKj9jp4a4lDZiA1Exd_d0dmXu9ifi5-rfdl1TeUTUfx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Progressive sparse image sensing using Iterative Methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azghani, M. ; Marvasti, F.</creator><creatorcontrib>Azghani, M. ; Marvasti, F.</creatorcontrib><description>Progressive image transmission enables the receivers to reconstruct a transmitted image at various bit rates. Most of the works in this field are based on the conventional Shannon-Nyquist sampling theory. In the present work, progressive image transmission is investigated using sparse recovery of random samples. The sparse recovery methods such as Iterative Method with Adaptive Thresholding (IMAT) and Iterative IKMAX Thresholding (IKMAX) are exploited in this framework since they have the ability for successive reconstruction. The simulation results indicate that the proposed method performs well in progressive recovery. The IKMAX has better final reconstruction than IMAT at the cost of requiring sparse signal with extra information about the sparsity number. However, the IMAT has the ability to recover the compressible signals. Furthermore, two sampling strategies, random sampling and uniform sampling are exploited. The simulations show that IMAT is a better choice for random sampling and IKMAX behaves better than IMAT in the case of uniform sampling.</description><identifier>ISBN: 1467320722</identifier><identifier>ISBN: 9781467320726</identifier><identifier>EISBN: 9781467320733</identifier><identifier>EISBN: 9781467320719</identifier><identifier>EISBN: 1467320714</identifier><identifier>EISBN: 1467320730</identifier><identifier>DOI: 10.1109/ISTEL.2012.6483113</identifier><language>eng</language><publisher>IEEE</publisher><subject>Compressed sensing ; IKMAX ; Image coding ; Image reconstruction ; IMAT ; Iterative methods ; Matching pursuit algorithms ; progressive transmission ; random sampling ; Simulation ; sparse ; Time-domain analysis ; uniform sampling</subject><ispartof>6th International Symposium on Telecommunications (IST), 2012, p.897-901</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6483113$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6483113$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azghani, M.</creatorcontrib><creatorcontrib>Marvasti, F.</creatorcontrib><title>Progressive sparse image sensing using Iterative Methods</title><title>6th International Symposium on Telecommunications (IST)</title><addtitle>ISTEL</addtitle><description>Progressive image transmission enables the receivers to reconstruct a transmitted image at various bit rates. Most of the works in this field are based on the conventional Shannon-Nyquist sampling theory. In the present work, progressive image transmission is investigated using sparse recovery of random samples. The sparse recovery methods such as Iterative Method with Adaptive Thresholding (IMAT) and Iterative IKMAX Thresholding (IKMAX) are exploited in this framework since they have the ability for successive reconstruction. The simulation results indicate that the proposed method performs well in progressive recovery. The IKMAX has better final reconstruction than IMAT at the cost of requiring sparse signal with extra information about the sparsity number. However, the IMAT has the ability to recover the compressible signals. Furthermore, two sampling strategies, random sampling and uniform sampling are exploited. The simulations show that IMAT is a better choice for random sampling and IKMAX behaves better than IMAT in the case of uniform sampling.</description><subject>Compressed sensing</subject><subject>IKMAX</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>IMAT</subject><subject>Iterative methods</subject><subject>Matching pursuit algorithms</subject><subject>progressive transmission</subject><subject>random sampling</subject><subject>Simulation</subject><subject>sparse</subject><subject>Time-domain analysis</subject><subject>uniform sampling</subject><isbn>1467320722</isbn><isbn>9781467320726</isbn><isbn>9781467320733</isbn><isbn>9781467320719</isbn><isbn>1467320714</isbn><isbn>1467320730</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91Kw0AQhVdEUGteQG_yAokzu9v9uZRSNRBRsF6XcTOJEW3LbhR8e1etN2fOB2eGOUKcI9SI4C-bx9WyrSWgrI12ClEdiMJbh9pYJcEqdShO_0HKY1Gk9AoAedmCwRPhHuJ2iJzS-Mll2lFMXI7vNGTgTRo3Q_nxq83Ekaaf0B1PL9sunYmjnt4SF_s5E0_Xy9Xitmrvb5rFVVuNaOdT1REB6NBpp9H03vXGKGl8gPDss_WkuFNkMMxdDhKj9jp4a4lDZiA1Exd_d0dmXu9ifi5-rfdl1TeUTUfx</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Azghani, M.</creator><creator>Marvasti, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Progressive sparse image sensing using Iterative Methods</title><author>Azghani, M. ; Marvasti, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-daa004cd48416f98f663269c0cb96639a3ed3a61c58a00ae1494c977aeca000a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Compressed sensing</topic><topic>IKMAX</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>IMAT</topic><topic>Iterative methods</topic><topic>Matching pursuit algorithms</topic><topic>progressive transmission</topic><topic>random sampling</topic><topic>Simulation</topic><topic>sparse</topic><topic>Time-domain analysis</topic><topic>uniform sampling</topic><toplevel>online_resources</toplevel><creatorcontrib>Azghani, M.</creatorcontrib><creatorcontrib>Marvasti, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azghani, M.</au><au>Marvasti, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Progressive sparse image sensing using Iterative Methods</atitle><btitle>6th International Symposium on Telecommunications (IST)</btitle><stitle>ISTEL</stitle><date>2012-11</date><risdate>2012</risdate><spage>897</spage><epage>901</epage><pages>897-901</pages><isbn>1467320722</isbn><isbn>9781467320726</isbn><eisbn>9781467320733</eisbn><eisbn>9781467320719</eisbn><eisbn>1467320714</eisbn><eisbn>1467320730</eisbn><abstract>Progressive image transmission enables the receivers to reconstruct a transmitted image at various bit rates. Most of the works in this field are based on the conventional Shannon-Nyquist sampling theory. In the present work, progressive image transmission is investigated using sparse recovery of random samples. The sparse recovery methods such as Iterative Method with Adaptive Thresholding (IMAT) and Iterative IKMAX Thresholding (IKMAX) are exploited in this framework since they have the ability for successive reconstruction. The simulation results indicate that the proposed method performs well in progressive recovery. The IKMAX has better final reconstruction than IMAT at the cost of requiring sparse signal with extra information about the sparsity number. However, the IMAT has the ability to recover the compressible signals. Furthermore, two sampling strategies, random sampling and uniform sampling are exploited. The simulations show that IMAT is a better choice for random sampling and IKMAX behaves better than IMAT in the case of uniform sampling.</abstract><pub>IEEE</pub><doi>10.1109/ISTEL.2012.6483113</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467320722
ispartof 6th International Symposium on Telecommunications (IST), 2012, p.897-901
issn
language eng
recordid cdi_ieee_primary_6483113
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Compressed sensing
IKMAX
Image coding
Image reconstruction
IMAT
Iterative methods
Matching pursuit algorithms
progressive transmission
random sampling
Simulation
sparse
Time-domain analysis
uniform sampling
title Progressive sparse image sensing using Iterative Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Progressive%20sparse%20image%20sensing%20using%20Iterative%20Methods&rft.btitle=6th%20International%20Symposium%20on%20Telecommunications%20(IST)&rft.au=Azghani,%20M.&rft.date=2012-11&rft.spage=897&rft.epage=901&rft.pages=897-901&rft.isbn=1467320722&rft.isbn_list=9781467320726&rft_id=info:doi/10.1109/ISTEL.2012.6483113&rft_dat=%3Cieee_6IE%3E6483113%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467320733&rft.eisbn_list=9781467320719&rft.eisbn_list=1467320714&rft.eisbn_list=1467320730&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6483113&rfr_iscdi=true