Clustering Methods Based on Closest String via Rank Distance
This paper aims to present two clustering methods based on rank distance. Rank distance has applications in many different fields such as computational linguistics, biology and informatics. Rank distance can be computed fast and benefits from some features of the edit (Levenshtein) distance. In [1]...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | |
container_start_page | 207 |
container_title | |
container_volume | |
creator | Dinu, L. P. Ionescu, R-T |
description | This paper aims to present two clustering methods based on rank distance. Rank distance has applications in many different fields such as computational linguistics, biology and informatics. Rank distance can be computed fast and benefits from some features of the edit (Levenshtein) distance. In [1] two clustering methods based on rank distance are described. The K-means algorithm uses the median string to represent the centroid of a cluster, while the hierarchical clustering method joins pairs of strings and replaces each pair with the median string. Two similar clustering algorithms are about to be presented in this paper, only that the closest string will be considered instead of the median string. The new clustering algorithms are compared with those presented in [1] and other similar clustering techniques. Experiments using mitochondrial DNA sequences extracted from several mammals are performed to compare the results of the clustering methods. Results demonstrate the clustering performance and the utility of the new algorithms. |
doi_str_mv | 10.1109/SYNASC.2012.14 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6481031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6481031</ieee_id><sourcerecordid>6481031</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f7e001b0883588d62f307ad73ce8ecf011a2f938aff0c5860ab44d23e45b7aa53</originalsourceid><addsrcrecordid>eNotj8tKxEAURBtEUMZs3bjpH0i8_e6AmzE-YVQwunA13CS3tTUmko6Cf29QVwV1oA7F2KGAQggoj-un23VdFRKELITeYVnpvNDWKQPS2j2WpfQKAAKWQtt9dlL1n2mmKQ7P_Ibml7FL_BQTdXwceNWPidLM6_mXf0Xk9zi88bOYZhxaOmC7AftE2X-u2OPF-UN1lW_uLq-r9SaPwpk5D44WYwPeK-N9Z2VQ4LBzqiVPbQAhUIZSeQwBWuMtYKN1JxVp0zhEo1bs6G83EtH2Y4rvOH1vrfbLDaF-AGlLRdw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Clustering Methods Based on Closest String via Rank Distance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dinu, L. P. ; Ionescu, R-T</creator><creatorcontrib>Dinu, L. P. ; Ionescu, R-T</creatorcontrib><description>This paper aims to present two clustering methods based on rank distance. Rank distance has applications in many different fields such as computational linguistics, biology and informatics. Rank distance can be computed fast and benefits from some features of the edit (Levenshtein) distance. In [1] two clustering methods based on rank distance are described. The K-means algorithm uses the median string to represent the centroid of a cluster, while the hierarchical clustering method joins pairs of strings and replaces each pair with the median string. Two similar clustering algorithms are about to be presented in this paper, only that the closest string will be considered instead of the median string. The new clustering algorithms are compared with those presented in [1] and other similar clustering techniques. Experiments using mitochondrial DNA sequences extracted from several mammals are performed to compare the results of the clustering methods. Results demonstrate the clustering performance and the utility of the new algorithms.</description><identifier>ISBN: 9781467350266</identifier><identifier>ISBN: 1467350265</identifier><identifier>DOI: 10.1109/SYNASC.2012.14</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; bioinformatics ; closest string ; closest substring ; clustering ; Clustering algorithms ; Clustering methods ; DNA ; DNA applications ; DNA sequencing ; hierarchical clustering ; k-means ; Phylogeny ; rank distance</subject><ispartof>2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2012, p.207-213</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6481031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6481031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dinu, L. P.</creatorcontrib><creatorcontrib>Ionescu, R-T</creatorcontrib><title>Clustering Methods Based on Closest String via Rank Distance</title><title>2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing</title><addtitle>synasc</addtitle><description>This paper aims to present two clustering methods based on rank distance. Rank distance has applications in many different fields such as computational linguistics, biology and informatics. Rank distance can be computed fast and benefits from some features of the edit (Levenshtein) distance. In [1] two clustering methods based on rank distance are described. The K-means algorithm uses the median string to represent the centroid of a cluster, while the hierarchical clustering method joins pairs of strings and replaces each pair with the median string. Two similar clustering algorithms are about to be presented in this paper, only that the closest string will be considered instead of the median string. The new clustering algorithms are compared with those presented in [1] and other similar clustering techniques. Experiments using mitochondrial DNA sequences extracted from several mammals are performed to compare the results of the clustering methods. Results demonstrate the clustering performance and the utility of the new algorithms.</description><subject>Algorithm design and analysis</subject><subject>bioinformatics</subject><subject>closest string</subject><subject>closest substring</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>DNA</subject><subject>DNA applications</subject><subject>DNA sequencing</subject><subject>hierarchical clustering</subject><subject>k-means</subject><subject>Phylogeny</subject><subject>rank distance</subject><isbn>9781467350266</isbn><isbn>1467350265</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxEAURBtEUMZs3bjpH0i8_e6AmzE-YVQwunA13CS3tTUmko6Cf29QVwV1oA7F2KGAQggoj-un23VdFRKELITeYVnpvNDWKQPS2j2WpfQKAAKWQtt9dlL1n2mmKQ7P_Ibml7FL_BQTdXwceNWPidLM6_mXf0Xk9zi88bOYZhxaOmC7AftE2X-u2OPF-UN1lW_uLq-r9SaPwpk5D44WYwPeK-N9Z2VQ4LBzqiVPbQAhUIZSeQwBWuMtYKN1JxVp0zhEo1bs6G83EtH2Y4rvOH1vrfbLDaF-AGlLRdw</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Dinu, L. P.</creator><creator>Ionescu, R-T</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Clustering Methods Based on Closest String via Rank Distance</title><author>Dinu, L. P. ; Ionescu, R-T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f7e001b0883588d62f307ad73ce8ecf011a2f938aff0c5860ab44d23e45b7aa53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>bioinformatics</topic><topic>closest string</topic><topic>closest substring</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>DNA</topic><topic>DNA applications</topic><topic>DNA sequencing</topic><topic>hierarchical clustering</topic><topic>k-means</topic><topic>Phylogeny</topic><topic>rank distance</topic><toplevel>online_resources</toplevel><creatorcontrib>Dinu, L. P.</creatorcontrib><creatorcontrib>Ionescu, R-T</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dinu, L. P.</au><au>Ionescu, R-T</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Clustering Methods Based on Closest String via Rank Distance</atitle><btitle>2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing</btitle><stitle>synasc</stitle><date>2012-09</date><risdate>2012</risdate><spage>207</spage><epage>213</epage><pages>207-213</pages><isbn>9781467350266</isbn><isbn>1467350265</isbn><coden>IEEPAD</coden><abstract>This paper aims to present two clustering methods based on rank distance. Rank distance has applications in many different fields such as computational linguistics, biology and informatics. Rank distance can be computed fast and benefits from some features of the edit (Levenshtein) distance. In [1] two clustering methods based on rank distance are described. The K-means algorithm uses the median string to represent the centroid of a cluster, while the hierarchical clustering method joins pairs of strings and replaces each pair with the median string. Two similar clustering algorithms are about to be presented in this paper, only that the closest string will be considered instead of the median string. The new clustering algorithms are compared with those presented in [1] and other similar clustering techniques. Experiments using mitochondrial DNA sequences extracted from several mammals are performed to compare the results of the clustering methods. Results demonstrate the clustering performance and the utility of the new algorithms.</abstract><pub>IEEE</pub><doi>10.1109/SYNASC.2012.14</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467350266 |
ispartof | 2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2012, p.207-213 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6481031 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis bioinformatics closest string closest substring clustering Clustering algorithms Clustering methods DNA DNA applications DNA sequencing hierarchical clustering k-means Phylogeny rank distance |
title | Clustering Methods Based on Closest String via Rank Distance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Clustering%20Methods%20Based%20on%20Closest%20String%20via%20Rank%20Distance&rft.btitle=2012%2014th%20International%20Symposium%20on%20Symbolic%20and%20Numeric%20Algorithms%20for%20Scientific%20Computing&rft.au=Dinu,%20L.%20P.&rft.date=2012-09&rft.spage=207&rft.epage=213&rft.pages=207-213&rft.isbn=9781467350266&rft.isbn_list=1467350265&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SYNASC.2012.14&rft_dat=%3Cieee_6IE%3E6481031%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6481031&rfr_iscdi=true |