Clustering Methods Based on Closest String via Rank Distance

This paper aims to present two clustering methods based on rank distance. Rank distance has applications in many different fields such as computational linguistics, biology and informatics. Rank distance can be computed fast and benefits from some features of the edit (Levenshtein) distance. In [1]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dinu, L. P., Ionescu, R-T
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue
container_start_page 207
container_title
container_volume
creator Dinu, L. P.
Ionescu, R-T
description This paper aims to present two clustering methods based on rank distance. Rank distance has applications in many different fields such as computational linguistics, biology and informatics. Rank distance can be computed fast and benefits from some features of the edit (Levenshtein) distance. In [1] two clustering methods based on rank distance are described. The K-means algorithm uses the median string to represent the centroid of a cluster, while the hierarchical clustering method joins pairs of strings and replaces each pair with the median string. Two similar clustering algorithms are about to be presented in this paper, only that the closest string will be considered instead of the median string. The new clustering algorithms are compared with those presented in [1] and other similar clustering techniques. Experiments using mitochondrial DNA sequences extracted from several mammals are performed to compare the results of the clustering methods. Results demonstrate the clustering performance and the utility of the new algorithms.
doi_str_mv 10.1109/SYNASC.2012.14
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6481031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6481031</ieee_id><sourcerecordid>6481031</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f7e001b0883588d62f307ad73ce8ecf011a2f938aff0c5860ab44d23e45b7aa53</originalsourceid><addsrcrecordid>eNotj8tKxEAURBtEUMZs3bjpH0i8_e6AmzE-YVQwunA13CS3tTUmko6Cf29QVwV1oA7F2KGAQggoj-un23VdFRKELITeYVnpvNDWKQPS2j2WpfQKAAKWQtt9dlL1n2mmKQ7P_Ibml7FL_BQTdXwceNWPidLM6_mXf0Xk9zi88bOYZhxaOmC7AftE2X-u2OPF-UN1lW_uLq-r9SaPwpk5D44WYwPeK-N9Z2VQ4LBzqiVPbQAhUIZSeQwBWuMtYKN1JxVp0zhEo1bs6G83EtH2Y4rvOH1vrfbLDaF-AGlLRdw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Clustering Methods Based on Closest String via Rank Distance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dinu, L. P. ; Ionescu, R-T</creator><creatorcontrib>Dinu, L. P. ; Ionescu, R-T</creatorcontrib><description>This paper aims to present two clustering methods based on rank distance. Rank distance has applications in many different fields such as computational linguistics, biology and informatics. Rank distance can be computed fast and benefits from some features of the edit (Levenshtein) distance. In [1] two clustering methods based on rank distance are described. The K-means algorithm uses the median string to represent the centroid of a cluster, while the hierarchical clustering method joins pairs of strings and replaces each pair with the median string. Two similar clustering algorithms are about to be presented in this paper, only that the closest string will be considered instead of the median string. The new clustering algorithms are compared with those presented in [1] and other similar clustering techniques. Experiments using mitochondrial DNA sequences extracted from several mammals are performed to compare the results of the clustering methods. Results demonstrate the clustering performance and the utility of the new algorithms.</description><identifier>ISBN: 9781467350266</identifier><identifier>ISBN: 1467350265</identifier><identifier>DOI: 10.1109/SYNASC.2012.14</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; bioinformatics ; closest string ; closest substring ; clustering ; Clustering algorithms ; Clustering methods ; DNA ; DNA applications ; DNA sequencing ; hierarchical clustering ; k-means ; Phylogeny ; rank distance</subject><ispartof>2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2012, p.207-213</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6481031$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6481031$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dinu, L. P.</creatorcontrib><creatorcontrib>Ionescu, R-T</creatorcontrib><title>Clustering Methods Based on Closest String via Rank Distance</title><title>2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing</title><addtitle>synasc</addtitle><description>This paper aims to present two clustering methods based on rank distance. Rank distance has applications in many different fields such as computational linguistics, biology and informatics. Rank distance can be computed fast and benefits from some features of the edit (Levenshtein) distance. In [1] two clustering methods based on rank distance are described. The K-means algorithm uses the median string to represent the centroid of a cluster, while the hierarchical clustering method joins pairs of strings and replaces each pair with the median string. Two similar clustering algorithms are about to be presented in this paper, only that the closest string will be considered instead of the median string. The new clustering algorithms are compared with those presented in [1] and other similar clustering techniques. Experiments using mitochondrial DNA sequences extracted from several mammals are performed to compare the results of the clustering methods. Results demonstrate the clustering performance and the utility of the new algorithms.</description><subject>Algorithm design and analysis</subject><subject>bioinformatics</subject><subject>closest string</subject><subject>closest substring</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>DNA</subject><subject>DNA applications</subject><subject>DNA sequencing</subject><subject>hierarchical clustering</subject><subject>k-means</subject><subject>Phylogeny</subject><subject>rank distance</subject><isbn>9781467350266</isbn><isbn>1467350265</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxEAURBtEUMZs3bjpH0i8_e6AmzE-YVQwunA13CS3tTUmko6Cf29QVwV1oA7F2KGAQggoj-un23VdFRKELITeYVnpvNDWKQPS2j2WpfQKAAKWQtt9dlL1n2mmKQ7P_Ibml7FL_BQTdXwceNWPidLM6_mXf0Xk9zi88bOYZhxaOmC7AftE2X-u2OPF-UN1lW_uLq-r9SaPwpk5D44WYwPeK-N9Z2VQ4LBzqiVPbQAhUIZSeQwBWuMtYKN1JxVp0zhEo1bs6G83EtH2Y4rvOH1vrfbLDaF-AGlLRdw</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Dinu, L. P.</creator><creator>Ionescu, R-T</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Clustering Methods Based on Closest String via Rank Distance</title><author>Dinu, L. P. ; Ionescu, R-T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f7e001b0883588d62f307ad73ce8ecf011a2f938aff0c5860ab44d23e45b7aa53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>bioinformatics</topic><topic>closest string</topic><topic>closest substring</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>DNA</topic><topic>DNA applications</topic><topic>DNA sequencing</topic><topic>hierarchical clustering</topic><topic>k-means</topic><topic>Phylogeny</topic><topic>rank distance</topic><toplevel>online_resources</toplevel><creatorcontrib>Dinu, L. P.</creatorcontrib><creatorcontrib>Ionescu, R-T</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dinu, L. P.</au><au>Ionescu, R-T</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Clustering Methods Based on Closest String via Rank Distance</atitle><btitle>2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing</btitle><stitle>synasc</stitle><date>2012-09</date><risdate>2012</risdate><spage>207</spage><epage>213</epage><pages>207-213</pages><isbn>9781467350266</isbn><isbn>1467350265</isbn><coden>IEEPAD</coden><abstract>This paper aims to present two clustering methods based on rank distance. Rank distance has applications in many different fields such as computational linguistics, biology and informatics. Rank distance can be computed fast and benefits from some features of the edit (Levenshtein) distance. In [1] two clustering methods based on rank distance are described. The K-means algorithm uses the median string to represent the centroid of a cluster, while the hierarchical clustering method joins pairs of strings and replaces each pair with the median string. Two similar clustering algorithms are about to be presented in this paper, only that the closest string will be considered instead of the median string. The new clustering algorithms are compared with those presented in [1] and other similar clustering techniques. Experiments using mitochondrial DNA sequences extracted from several mammals are performed to compare the results of the clustering methods. Results demonstrate the clustering performance and the utility of the new algorithms.</abstract><pub>IEEE</pub><doi>10.1109/SYNASC.2012.14</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467350266
ispartof 2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2012, p.207-213
issn
language eng
recordid cdi_ieee_primary_6481031
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
bioinformatics
closest string
closest substring
clustering
Clustering algorithms
Clustering methods
DNA
DNA applications
DNA sequencing
hierarchical clustering
k-means
Phylogeny
rank distance
title Clustering Methods Based on Closest String via Rank Distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Clustering%20Methods%20Based%20on%20Closest%20String%20via%20Rank%20Distance&rft.btitle=2012%2014th%20International%20Symposium%20on%20Symbolic%20and%20Numeric%20Algorithms%20for%20Scientific%20Computing&rft.au=Dinu,%20L.%20P.&rft.date=2012-09&rft.spage=207&rft.epage=213&rft.pages=207-213&rft.isbn=9781467350266&rft.isbn_list=1467350265&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SYNASC.2012.14&rft_dat=%3Cieee_6IE%3E6481031%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6481031&rfr_iscdi=true