Multi objective comparison of GA and LP techniques for generator reactive power optimization

Optimization of Generator output tends to increase the supply capability of generators at different voltage disturbances. The Genetic Algorithm (GA) approach is used in this paper to optimize the effect on the generator reactive power. The three control parameters used are: Generator voltages, Switc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rayudu, K., Jayalaxmi, A., Yesuratnam, G., Kumar, Y. D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Rayudu, K.
Jayalaxmi, A.
Yesuratnam, G.
Kumar, Y. D.
description Optimization of Generator output tends to increase the supply capability of generators at different voltage disturbances. The Genetic Algorithm (GA) approach is used in this paper to optimize the effect on the generator reactive power. The three control parameters used are: Generator voltages, Switchable VAR Compensators (SVC) and On Load Transformer tap Changers (OLTC). The proposed technique is tested with IEEE-24 bus system. A case study is done on all optimization variables (control parameters) and effect on generator reactive power output is analyzed. The results are compared with conventional Linear Programming (LP) Technique. The comparison clearly says GA approach performs better in optimization of generator VAR output requirement and also increases voltage stability by loss reduction.
doi_str_mv 10.1109/PowerI.2012.6479585
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6479585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6479585</ieee_id><sourcerecordid>6479585</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2832f3c2f93d99a8b288da5c6188023b84e847ea256eca57018badd0acfcf85e3</originalsourceid><addsrcrecordid>eNo1kM9OAjEYxGuMiYo8AZe-ANg_2_brkRBFEowc9GZCut2vWgLbtVs0-vRiwNPMHH6TyRAy4mzCObO3q_SFeTERjIuJroxVoM7I0BrglTaSGa3sObn-D9JckmHfbxhjB1oD6Cvy-rjflkhTvUFf4idSn3ady7FPLU2BzqfUtQ1drmhB_97Gjz32NKRM37DF7MrBZXRHsvsbQ1NX4i7-uBJTe0Mugtv2ODzpgLzc3z3PHsbLp_liNl2OIzeqjAVIEaQXwcrGWge1AGic8poDMCFrqBAqg04ojd4pwzjUrmmY88EHUCgHZHTsjYi47nLcufy9Ph0ifwF7ulbE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi objective comparison of GA and LP techniques for generator reactive power optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rayudu, K. ; Jayalaxmi, A. ; Yesuratnam, G. ; Kumar, Y. D.</creator><creatorcontrib>Rayudu, K. ; Jayalaxmi, A. ; Yesuratnam, G. ; Kumar, Y. D.</creatorcontrib><description>Optimization of Generator output tends to increase the supply capability of generators at different voltage disturbances. The Genetic Algorithm (GA) approach is used in this paper to optimize the effect on the generator reactive power. The three control parameters used are: Generator voltages, Switchable VAR Compensators (SVC) and On Load Transformer tap Changers (OLTC). The proposed technique is tested with IEEE-24 bus system. A case study is done on all optimization variables (control parameters) and effect on generator reactive power output is analyzed. The results are compared with conventional Linear Programming (LP) Technique. The comparison clearly says GA approach performs better in optimization of generator VAR output requirement and also increases voltage stability by loss reduction.</description><identifier>ISBN: 1467307637</identifier><identifier>ISBN: 9781467307635</identifier><identifier>EISBN: 9781467307659</identifier><identifier>EISBN: 1467307661</identifier><identifier>EISBN: 9781467307666</identifier><identifier>EISBN: 1467307653</identifier><identifier>DOI: 10.1109/PowerI.2012.6479585</identifier><language>eng</language><publisher>IEEE</publisher><subject>Generator Reactive power ; Generators ; Genetic algorithm ; Genetic algorithms ; Linear programming ; Natural selection ; Optimization ; Power loss ; Power system stability ; Reactive power ; Stability analysis ; Voltage stability</subject><ispartof>2012 IEEE Fifth Power India Conference, 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6479585$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6479585$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rayudu, K.</creatorcontrib><creatorcontrib>Jayalaxmi, A.</creatorcontrib><creatorcontrib>Yesuratnam, G.</creatorcontrib><creatorcontrib>Kumar, Y. D.</creatorcontrib><title>Multi objective comparison of GA and LP techniques for generator reactive power optimization</title><title>2012 IEEE Fifth Power India Conference</title><addtitle>PowerI</addtitle><description>Optimization of Generator output tends to increase the supply capability of generators at different voltage disturbances. The Genetic Algorithm (GA) approach is used in this paper to optimize the effect on the generator reactive power. The three control parameters used are: Generator voltages, Switchable VAR Compensators (SVC) and On Load Transformer tap Changers (OLTC). The proposed technique is tested with IEEE-24 bus system. A case study is done on all optimization variables (control parameters) and effect on generator reactive power output is analyzed. The results are compared with conventional Linear Programming (LP) Technique. The comparison clearly says GA approach performs better in optimization of generator VAR output requirement and also increases voltage stability by loss reduction.</description><subject>Generator Reactive power</subject><subject>Generators</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Linear programming</subject><subject>Natural selection</subject><subject>Optimization</subject><subject>Power loss</subject><subject>Power system stability</subject><subject>Reactive power</subject><subject>Stability analysis</subject><subject>Voltage stability</subject><isbn>1467307637</isbn><isbn>9781467307635</isbn><isbn>9781467307659</isbn><isbn>1467307661</isbn><isbn>9781467307666</isbn><isbn>1467307653</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM9OAjEYxGuMiYo8AZe-ANg_2_brkRBFEowc9GZCut2vWgLbtVs0-vRiwNPMHH6TyRAy4mzCObO3q_SFeTERjIuJroxVoM7I0BrglTaSGa3sObn-D9JckmHfbxhjB1oD6Cvy-rjflkhTvUFf4idSn3ady7FPLU2BzqfUtQ1drmhB_97Gjz32NKRM37DF7MrBZXRHsvsbQ1NX4i7-uBJTe0Mugtv2ODzpgLzc3z3PHsbLp_liNl2OIzeqjAVIEaQXwcrGWge1AGic8poDMCFrqBAqg04ojd4pwzjUrmmY88EHUCgHZHTsjYi47nLcufy9Ph0ifwF7ulbE</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Rayudu, K.</creator><creator>Jayalaxmi, A.</creator><creator>Yesuratnam, G.</creator><creator>Kumar, Y. D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Multi objective comparison of GA and LP techniques for generator reactive power optimization</title><author>Rayudu, K. ; Jayalaxmi, A. ; Yesuratnam, G. ; Kumar, Y. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2832f3c2f93d99a8b288da5c6188023b84e847ea256eca57018badd0acfcf85e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Generator Reactive power</topic><topic>Generators</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Linear programming</topic><topic>Natural selection</topic><topic>Optimization</topic><topic>Power loss</topic><topic>Power system stability</topic><topic>Reactive power</topic><topic>Stability analysis</topic><topic>Voltage stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Rayudu, K.</creatorcontrib><creatorcontrib>Jayalaxmi, A.</creatorcontrib><creatorcontrib>Yesuratnam, G.</creatorcontrib><creatorcontrib>Kumar, Y. D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rayudu, K.</au><au>Jayalaxmi, A.</au><au>Yesuratnam, G.</au><au>Kumar, Y. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi objective comparison of GA and LP techniques for generator reactive power optimization</atitle><btitle>2012 IEEE Fifth Power India Conference</btitle><stitle>PowerI</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1467307637</isbn><isbn>9781467307635</isbn><eisbn>9781467307659</eisbn><eisbn>1467307661</eisbn><eisbn>9781467307666</eisbn><eisbn>1467307653</eisbn><abstract>Optimization of Generator output tends to increase the supply capability of generators at different voltage disturbances. The Genetic Algorithm (GA) approach is used in this paper to optimize the effect on the generator reactive power. The three control parameters used are: Generator voltages, Switchable VAR Compensators (SVC) and On Load Transformer tap Changers (OLTC). The proposed technique is tested with IEEE-24 bus system. A case study is done on all optimization variables (control parameters) and effect on generator reactive power output is analyzed. The results are compared with conventional Linear Programming (LP) Technique. The comparison clearly says GA approach performs better in optimization of generator VAR output requirement and also increases voltage stability by loss reduction.</abstract><pub>IEEE</pub><doi>10.1109/PowerI.2012.6479585</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467307637
ispartof 2012 IEEE Fifth Power India Conference, 2012, p.1-5
issn
language eng
recordid cdi_ieee_primary_6479585
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Generator Reactive power
Generators
Genetic algorithm
Genetic algorithms
Linear programming
Natural selection
Optimization
Power loss
Power system stability
Reactive power
Stability analysis
Voltage stability
title Multi objective comparison of GA and LP techniques for generator reactive power optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi%20objective%20comparison%20of%20GA%20and%20LP%20techniques%20for%20generator%20reactive%20power%20optimization&rft.btitle=2012%20IEEE%20Fifth%20Power%20India%20Conference&rft.au=Rayudu,%20K.&rft.date=2012-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1467307637&rft.isbn_list=9781467307635&rft_id=info:doi/10.1109/PowerI.2012.6479585&rft_dat=%3Cieee_6IE%3E6479585%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467307659&rft.eisbn_list=1467307661&rft.eisbn_list=9781467307666&rft.eisbn_list=1467307653&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6479585&rfr_iscdi=true