An analysis of Intelligent Demand Management criteria applied in a building case study
The power consumption in buildings represent a 30-40% of the final energy usage, which is caused by: HVAC (Heating, Ventilation and Air Conditioning), lighting and appliances with any connection to the power grid. The major challenge is to minimize the power consumption by optimizing the operation o...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Quintero M, Christian G. Mares, J. R. J. |
description | The power consumption in buildings represent a 30-40% of the final energy usage, which is caused by: HVAC (Heating, Ventilation and Air Conditioning), lighting and appliances with any connection to the power grid. The major challenge is to minimize the power consumption by optimizing the operation of several loads without impact in the customer's comfort. For this purpose, the design of an Intelligent Demand Management using Intelligent Systems is presented in this paper. Furthermore a comparative analysis is carried out to evaluate the power consumption performance of some Demand Side Management (DSM) techniques. In this case Direct Load Control (DLC), Load Priority (LP) and Scheduled Programming (SP) are compared with the proposed approach based on Artificial Neural Networks (ANNs). Experimental testing is performed with the consumption data base. The testing results show that energy savings can be achieved through control of the states of various loads. |
doi_str_mv | 10.1109/SIFAE.2012.6478881 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6478881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6478881</ieee_id><sourcerecordid>6478881</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f1de9b91124dbdb15411d2c6fce47c4c7f2c726fc50e7d1ce5024ab89d2f147c3</originalsourceid><addsrcrecordid>eNo1UE1PgzAYrjEm6uQP6KV_AOxbCoXjMrdJMuPBxetS2rekplRC2YF_L8Z5evJ8Hh5CHoFlAKx-_mh2623GGfCsFLKqKrgi9yBKmYuyKOCaJLWs_nle3JIkxi_G2FIuOeR35HMdqArKz9FF-m1pEyb03nUYJvqCvQqGvi1-h_2vokc34egUVcPgHRrqljZtz84bFzqqVUQap7OZH8iNVT5icsEVOe62x81renjfN5v1IXU1m1ILBuu2BuDCtKaFQgAYrkurUUgttLRcS77QgqE0oLFgXKi2qg23sCTyFXn6m3WIeBpG16txPl2eyH8AiuRS5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An analysis of Intelligent Demand Management criteria applied in a building case study</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Quintero M, Christian G. ; Mares, J. R. J.</creator><creatorcontrib>Quintero M, Christian G. ; Mares, J. R. J.</creatorcontrib><description>The power consumption in buildings represent a 30-40% of the final energy usage, which is caused by: HVAC (Heating, Ventilation and Air Conditioning), lighting and appliances with any connection to the power grid. The major challenge is to minimize the power consumption by optimizing the operation of several loads without impact in the customer's comfort. For this purpose, the design of an Intelligent Demand Management using Intelligent Systems is presented in this paper. Furthermore a comparative analysis is carried out to evaluate the power consumption performance of some Demand Side Management (DSM) techniques. In this case Direct Load Control (DLC), Load Priority (LP) and Scheduled Programming (SP) are compared with the proposed approach based on Artificial Neural Networks (ANNs). Experimental testing is performed with the consumption data base. The testing results show that energy savings can be achieved through control of the states of various loads.</description><identifier>ISBN: 9781467346535</identifier><identifier>ISBN: 1467346535</identifier><identifier>EISBN: 1467346551</identifier><identifier>EISBN: 9781467346542</identifier><identifier>EISBN: 1467346543</identifier><identifier>EISBN: 9781467346559</identifier><identifier>DOI: 10.1109/SIFAE.2012.6478881</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air conditioning ; Buildings ; Computers ; Demand Side Management (DSM) ; Energy Savings ; Energy-Efficiency ; Performance evaluation ; Power demand ; Programming</subject><ispartof>2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6478881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6478881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quintero M, Christian G.</creatorcontrib><creatorcontrib>Mares, J. R. J.</creatorcontrib><title>An analysis of Intelligent Demand Management criteria applied in a building case study</title><title>2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE)</title><addtitle>SIFAE</addtitle><description>The power consumption in buildings represent a 30-40% of the final energy usage, which is caused by: HVAC (Heating, Ventilation and Air Conditioning), lighting and appliances with any connection to the power grid. The major challenge is to minimize the power consumption by optimizing the operation of several loads without impact in the customer's comfort. For this purpose, the design of an Intelligent Demand Management using Intelligent Systems is presented in this paper. Furthermore a comparative analysis is carried out to evaluate the power consumption performance of some Demand Side Management (DSM) techniques. In this case Direct Load Control (DLC), Load Priority (LP) and Scheduled Programming (SP) are compared with the proposed approach based on Artificial Neural Networks (ANNs). Experimental testing is performed with the consumption data base. The testing results show that energy savings can be achieved through control of the states of various loads.</description><subject>Air conditioning</subject><subject>Buildings</subject><subject>Computers</subject><subject>Demand Side Management (DSM)</subject><subject>Energy Savings</subject><subject>Energy-Efficiency</subject><subject>Performance evaluation</subject><subject>Power demand</subject><subject>Programming</subject><isbn>9781467346535</isbn><isbn>1467346535</isbn><isbn>1467346551</isbn><isbn>9781467346542</isbn><isbn>1467346543</isbn><isbn>9781467346559</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UE1PgzAYrjEm6uQP6KV_AOxbCoXjMrdJMuPBxetS2rekplRC2YF_L8Z5evJ8Hh5CHoFlAKx-_mh2623GGfCsFLKqKrgi9yBKmYuyKOCaJLWs_nle3JIkxi_G2FIuOeR35HMdqArKz9FF-m1pEyb03nUYJvqCvQqGvi1-h_2vokc34egUVcPgHRrqljZtz84bFzqqVUQap7OZH8iNVT5icsEVOe62x81renjfN5v1IXU1m1ILBuu2BuDCtKaFQgAYrkurUUgttLRcS77QgqE0oLFgXKi2qg23sCTyFXn6m3WIeBpG16txPl2eyH8AiuRS5Q</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Quintero M, Christian G.</creator><creator>Mares, J. R. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>An analysis of Intelligent Demand Management criteria applied in a building case study</title><author>Quintero M, Christian G. ; Mares, J. R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f1de9b91124dbdb15411d2c6fce47c4c7f2c726fc50e7d1ce5024ab89d2f147c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air conditioning</topic><topic>Buildings</topic><topic>Computers</topic><topic>Demand Side Management (DSM)</topic><topic>Energy Savings</topic><topic>Energy-Efficiency</topic><topic>Performance evaluation</topic><topic>Power demand</topic><topic>Programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Quintero M, Christian G.</creatorcontrib><creatorcontrib>Mares, J. R. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quintero M, Christian G.</au><au>Mares, J. R. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An analysis of Intelligent Demand Management criteria applied in a building case study</atitle><btitle>2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE)</btitle><stitle>SIFAE</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467346535</isbn><isbn>1467346535</isbn><eisbn>1467346551</eisbn><eisbn>9781467346542</eisbn><eisbn>1467346543</eisbn><eisbn>9781467346559</eisbn><abstract>The power consumption in buildings represent a 30-40% of the final energy usage, which is caused by: HVAC (Heating, Ventilation and Air Conditioning), lighting and appliances with any connection to the power grid. The major challenge is to minimize the power consumption by optimizing the operation of several loads without impact in the customer's comfort. For this purpose, the design of an Intelligent Demand Management using Intelligent Systems is presented in this paper. Furthermore a comparative analysis is carried out to evaluate the power consumption performance of some Demand Side Management (DSM) techniques. In this case Direct Load Control (DLC), Load Priority (LP) and Scheduled Programming (SP) are compared with the proposed approach based on Artificial Neural Networks (ANNs). Experimental testing is performed with the consumption data base. The testing results show that energy savings can be achieved through control of the states of various loads.</abstract><pub>IEEE</pub><doi>10.1109/SIFAE.2012.6478881</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467346535 |
ispartof | 2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE), 2012, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6478881 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Air conditioning Buildings Computers Demand Side Management (DSM) Energy Savings Energy-Efficiency Performance evaluation Power demand Programming |
title | An analysis of Intelligent Demand Management criteria applied in a building case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20analysis%20of%20Intelligent%20Demand%20Management%20criteria%20applied%20in%20a%20building%20case%20study&rft.btitle=2012%20IEEE%20International%20Symposium%20on%20Alternative%20Energies%20and%20Energy%20Quality%20(SIFAE)&rft.au=Quintero%20M,%20Christian%20G.&rft.date=2012-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467346535&rft.isbn_list=1467346535&rft_id=info:doi/10.1109/SIFAE.2012.6478881&rft_dat=%3Cieee_6IE%3E6478881%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467346551&rft.eisbn_list=9781467346542&rft.eisbn_list=1467346543&rft.eisbn_list=9781467346559&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6478881&rfr_iscdi=true |