An analysis of Intelligent Demand Management criteria applied in a building case study

The power consumption in buildings represent a 30-40% of the final energy usage, which is caused by: HVAC (Heating, Ventilation and Air Conditioning), lighting and appliances with any connection to the power grid. The major challenge is to minimize the power consumption by optimizing the operation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Quintero M, Christian G., Mares, J. R. J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Quintero M, Christian G.
Mares, J. R. J.
description The power consumption in buildings represent a 30-40% of the final energy usage, which is caused by: HVAC (Heating, Ventilation and Air Conditioning), lighting and appliances with any connection to the power grid. The major challenge is to minimize the power consumption by optimizing the operation of several loads without impact in the customer's comfort. For this purpose, the design of an Intelligent Demand Management using Intelligent Systems is presented in this paper. Furthermore a comparative analysis is carried out to evaluate the power consumption performance of some Demand Side Management (DSM) techniques. In this case Direct Load Control (DLC), Load Priority (LP) and Scheduled Programming (SP) are compared with the proposed approach based on Artificial Neural Networks (ANNs). Experimental testing is performed with the consumption data base. The testing results show that energy savings can be achieved through control of the states of various loads.
doi_str_mv 10.1109/SIFAE.2012.6478881
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6478881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6478881</ieee_id><sourcerecordid>6478881</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f1de9b91124dbdb15411d2c6fce47c4c7f2c726fc50e7d1ce5024ab89d2f147c3</originalsourceid><addsrcrecordid>eNo1UE1PgzAYrjEm6uQP6KV_AOxbCoXjMrdJMuPBxetS2rekplRC2YF_L8Z5evJ8Hh5CHoFlAKx-_mh2623GGfCsFLKqKrgi9yBKmYuyKOCaJLWs_nle3JIkxi_G2FIuOeR35HMdqArKz9FF-m1pEyb03nUYJvqCvQqGvi1-h_2vokc34egUVcPgHRrqljZtz84bFzqqVUQap7OZH8iNVT5icsEVOe62x81renjfN5v1IXU1m1ILBuu2BuDCtKaFQgAYrkurUUgttLRcS77QgqE0oLFgXKi2qg23sCTyFXn6m3WIeBpG16txPl2eyH8AiuRS5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An analysis of Intelligent Demand Management criteria applied in a building case study</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Quintero M, Christian G. ; Mares, J. R. J.</creator><creatorcontrib>Quintero M, Christian G. ; Mares, J. R. J.</creatorcontrib><description>The power consumption in buildings represent a 30-40% of the final energy usage, which is caused by: HVAC (Heating, Ventilation and Air Conditioning), lighting and appliances with any connection to the power grid. The major challenge is to minimize the power consumption by optimizing the operation of several loads without impact in the customer's comfort. For this purpose, the design of an Intelligent Demand Management using Intelligent Systems is presented in this paper. Furthermore a comparative analysis is carried out to evaluate the power consumption performance of some Demand Side Management (DSM) techniques. In this case Direct Load Control (DLC), Load Priority (LP) and Scheduled Programming (SP) are compared with the proposed approach based on Artificial Neural Networks (ANNs). Experimental testing is performed with the consumption data base. The testing results show that energy savings can be achieved through control of the states of various loads.</description><identifier>ISBN: 9781467346535</identifier><identifier>ISBN: 1467346535</identifier><identifier>EISBN: 1467346551</identifier><identifier>EISBN: 9781467346542</identifier><identifier>EISBN: 1467346543</identifier><identifier>EISBN: 9781467346559</identifier><identifier>DOI: 10.1109/SIFAE.2012.6478881</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air conditioning ; Buildings ; Computers ; Demand Side Management (DSM) ; Energy Savings ; Energy-Efficiency ; Performance evaluation ; Power demand ; Programming</subject><ispartof>2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6478881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6478881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Quintero M, Christian G.</creatorcontrib><creatorcontrib>Mares, J. R. J.</creatorcontrib><title>An analysis of Intelligent Demand Management criteria applied in a building case study</title><title>2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE)</title><addtitle>SIFAE</addtitle><description>The power consumption in buildings represent a 30-40% of the final energy usage, which is caused by: HVAC (Heating, Ventilation and Air Conditioning), lighting and appliances with any connection to the power grid. The major challenge is to minimize the power consumption by optimizing the operation of several loads without impact in the customer's comfort. For this purpose, the design of an Intelligent Demand Management using Intelligent Systems is presented in this paper. Furthermore a comparative analysis is carried out to evaluate the power consumption performance of some Demand Side Management (DSM) techniques. In this case Direct Load Control (DLC), Load Priority (LP) and Scheduled Programming (SP) are compared with the proposed approach based on Artificial Neural Networks (ANNs). Experimental testing is performed with the consumption data base. The testing results show that energy savings can be achieved through control of the states of various loads.</description><subject>Air conditioning</subject><subject>Buildings</subject><subject>Computers</subject><subject>Demand Side Management (DSM)</subject><subject>Energy Savings</subject><subject>Energy-Efficiency</subject><subject>Performance evaluation</subject><subject>Power demand</subject><subject>Programming</subject><isbn>9781467346535</isbn><isbn>1467346535</isbn><isbn>1467346551</isbn><isbn>9781467346542</isbn><isbn>1467346543</isbn><isbn>9781467346559</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UE1PgzAYrjEm6uQP6KV_AOxbCoXjMrdJMuPBxetS2rekplRC2YF_L8Z5evJ8Hh5CHoFlAKx-_mh2623GGfCsFLKqKrgi9yBKmYuyKOCaJLWs_nle3JIkxi_G2FIuOeR35HMdqArKz9FF-m1pEyb03nUYJvqCvQqGvi1-h_2vokc34egUVcPgHRrqljZtz84bFzqqVUQap7OZH8iNVT5icsEVOe62x81renjfN5v1IXU1m1ILBuu2BuDCtKaFQgAYrkurUUgttLRcS77QgqE0oLFgXKi2qg23sCTyFXn6m3WIeBpG16txPl2eyH8AiuRS5Q</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Quintero M, Christian G.</creator><creator>Mares, J. R. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>An analysis of Intelligent Demand Management criteria applied in a building case study</title><author>Quintero M, Christian G. ; Mares, J. R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f1de9b91124dbdb15411d2c6fce47c4c7f2c726fc50e7d1ce5024ab89d2f147c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air conditioning</topic><topic>Buildings</topic><topic>Computers</topic><topic>Demand Side Management (DSM)</topic><topic>Energy Savings</topic><topic>Energy-Efficiency</topic><topic>Performance evaluation</topic><topic>Power demand</topic><topic>Programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Quintero M, Christian G.</creatorcontrib><creatorcontrib>Mares, J. R. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quintero M, Christian G.</au><au>Mares, J. R. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An analysis of Intelligent Demand Management criteria applied in a building case study</atitle><btitle>2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE)</btitle><stitle>SIFAE</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467346535</isbn><isbn>1467346535</isbn><eisbn>1467346551</eisbn><eisbn>9781467346542</eisbn><eisbn>1467346543</eisbn><eisbn>9781467346559</eisbn><abstract>The power consumption in buildings represent a 30-40% of the final energy usage, which is caused by: HVAC (Heating, Ventilation and Air Conditioning), lighting and appliances with any connection to the power grid. The major challenge is to minimize the power consumption by optimizing the operation of several loads without impact in the customer's comfort. For this purpose, the design of an Intelligent Demand Management using Intelligent Systems is presented in this paper. Furthermore a comparative analysis is carried out to evaluate the power consumption performance of some Demand Side Management (DSM) techniques. In this case Direct Load Control (DLC), Load Priority (LP) and Scheduled Programming (SP) are compared with the proposed approach based on Artificial Neural Networks (ANNs). Experimental testing is performed with the consumption data base. The testing results show that energy savings can be achieved through control of the states of various loads.</abstract><pub>IEEE</pub><doi>10.1109/SIFAE.2012.6478881</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467346535
ispartof 2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE), 2012, p.1-6
issn
language eng
recordid cdi_ieee_primary_6478881
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Air conditioning
Buildings
Computers
Demand Side Management (DSM)
Energy Savings
Energy-Efficiency
Performance evaluation
Power demand
Programming
title An analysis of Intelligent Demand Management criteria applied in a building case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20analysis%20of%20Intelligent%20Demand%20Management%20criteria%20applied%20in%20a%20building%20case%20study&rft.btitle=2012%20IEEE%20International%20Symposium%20on%20Alternative%20Energies%20and%20Energy%20Quality%20(SIFAE)&rft.au=Quintero%20M,%20Christian%20G.&rft.date=2012-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467346535&rft.isbn_list=1467346535&rft_id=info:doi/10.1109/SIFAE.2012.6478881&rft_dat=%3Cieee_6IE%3E6478881%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467346551&rft.eisbn_list=9781467346542&rft.eisbn_list=1467346543&rft.eisbn_list=9781467346559&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6478881&rfr_iscdi=true